Remodeling of Mitochondrial Metabolism by a Mitochondria-Targeted RNAi Nanoplatform for Effective Cancer Therapy

被引:21
作者
Xu, Rui [1 ,2 ,3 ]
Huang, Linzhuo [1 ,2 ,3 ]
Liu, Jiayu [1 ,2 ,3 ]
Zhang, Yuxuan [1 ,2 ,3 ]
Xu, Ya [1 ,2 ,3 ]
Li, Rong [4 ]
Su, Shicheng [1 ,3 ]
Xu, Xiaoding [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Med Res Ctr, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Peoples R China
[2] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangzhou Key Lab Med Nanomat, Guangzhou 510120, Peoples R China
[3] Sun Yat Sen Mem Hosp, Nanhai Translat Innovat Ctr Precis Immunol, Foshan 528200, Peoples R China
[4] Univ South China, Affiliated Hosp 2, Hengyang Med Sch, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer therapy; gene regulation; mitochondria-targeting; mitochondrial metabolism; nanoparticles (NPs); NUCLEIC-ACIDS; DELIVERY; THERAPEUTICS; HALLMARKS; BARRIERS; STRATEGY; PLATFORM; GROWTH; DNA;
D O I
10.1002/smll.202305923
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA. A mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform can specifically deliver siRNA into the mitochondria and efficiently down-regulate mtDNA-encoded ATP6 expression, leading to combinatorial inhibition of tumor growth via suppressing the energy supply for tumor cells and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages.image
引用
收藏
页数:14
相关论文
共 50 条
[21]   Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy [J].
Peng, Xiqi ;
Tang, Songsong ;
Tang, Daitian ;
Zhou, Dewang ;
Li, Yangyang ;
Chen, Qiwei ;
Wan, Fangchen ;
Lukas, Heather ;
Han, Hong ;
Zhang, Xueji ;
Gao, Wei ;
Wu, Song .
SCIENCE ADVANCES, 2023, 9 (23)
[22]   Mitochondria-Targeted Energy Disruptor for Augmented Mild Hyperthermia Therapy of Orthotopic Lung Cancer [J].
Jiang, Renting ;
Lu, Yaxuan ;
Li, Linhu ;
Su, Hua ;
Shan, Beibei ;
Li, Ming .
ADVANCED FUNCTIONAL MATERIALS, 2025,
[23]   Mitochondria-targeted organic sonodynamic therapy agents: concept, benefits, and future directions [J].
Hwang, Eunbin ;
Yun, Minjae ;
Jung, Hyo Sung .
FRONTIERS IN CHEMISTRY, 2023, 11
[24]   Mitochondria-Targeted Photodynamic and Mild-Temperature Photothermal Therapy for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Stress [J].
Wang, Shao-Zhe ;
Guo, Yuxin ;
Zhang, Xinping ;
Feng, Hui-Heng ;
Wu, Shun-Yu ;
Zhu, Ya-Xuan ;
Jia, Hao-Ran ;
Duan, Qiu-Yi ;
Hao, Shi-Jie ;
Wu, Fu-Gen .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (42)
[25]   Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation [J].
Boyle, Kathleen A. ;
Van Wickle, Jonathan ;
Hill, R. Blake ;
Marchese, Adriano ;
Kalyanaraman, Balaraman ;
Dwinell, Michael B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (38) :14891-14904
[26]   Mitochondria-Targeted Polyamidoamine Dendrimer-Curcumin Construct for Hepatocellular Cancer Treatment [J].
Kianamiri, Shahla ;
Dinari, Ali ;
Sadeghizadeh, Majid ;
Rezaei, Mohsen ;
Daraei, Bahram ;
Bahsoun, Noor El-Huda ;
Nomani, Alireza .
MOLECULAR PHARMACEUTICS, 2020, 17 (12) :4483-4498
[27]   Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents [J].
Mattarei, Andrea ;
Romio, Matteo ;
Manago, Antonella ;
Zoratti, Mario ;
Paradisi, Cristina ;
Szabo, Ildiko ;
Leanza, Luigi ;
Biasutto, Lucia .
FRONTIERS IN ONCOLOGY, 2018, 8
[28]   Mitochondria-targeted photothermal-chemodynamic therapy enhances checkpoint blockade immunotherapy on colon cancer [J].
Zheng, Benchao ;
Wang, Hongbo ;
Zhai, Shiyi ;
Li, Jiangsheng ;
Lu, Kuangda .
MATERIALS TODAY BIO, 2025, 31
[29]   Mitochondria-targeted NO donor enables synergistic NO and photodynamic therapies for effective inhibition of cancer cell proliferation and migration [J].
Jiang, Yin ;
Huang, Shumei ;
Liu, Minghui ;
Weng, Jintao ;
You, Wenhui ;
Du, Xiaomeng ;
Zhang, Huatang ;
Qian, Jiang ;
Sun, Hongyan .
DYES AND PIGMENTS, 2024, 221
[30]   Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment [J].
Zinovkin, Roman A. A. ;
Lyamzaev, Konstantin G. G. ;
Chernyak, Boris V. V. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11