Motion of level sets by inverse anisotropic mean curvature

被引:0
|
作者
Della Pietra, Francesco [1 ]
Gavitone, Nunzia [1 ]
Xia, Chao [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
WULFF SHAPE; FLOW; HYPERSURFACES; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the weak formulation of the inverse anisotropic mean curvature flow, in the spirit of HuiskenIlmanen [15]. By using approximation method involving Finsler-p-Laplacian, we prove the existence and uniqueness of weak solutions.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 50 条
  • [31] Motion by Mean Curvature and Nucleation
    Comptes Rendus L'Acad Sci Ser I Math, 1 (55):
  • [32] Stochastic motion by mean curvature
    Arch Ration Mech Anal, 4 (313):
  • [33] Motion by mean curvature and nucleation
    Visintin, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (01): : 55 - 60
  • [34] Approximation of the anisotropic mean curvature flow
    Chambolle, Antonin
    Novaga, Matteo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (06): : 833 - 844
  • [35] Mean curvature flow of Reifenberg sets
    Hershkovits, Or
    GEOMETRY & TOPOLOGY, 2017, 21 (01) : 441 - 484
  • [36] CONVERGENCE OF SPACE-TIME DISCRETE THRESHOLD DYNAMICS TO ANISOTROPIC MOTION BY MEAN CURVATURE
    Misiats, Oleksandr
    Yip, Nung Kwan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6379 - 6411
  • [37] Inverse Mean Curvature Flow With Singularities
    Choi, Beomjun
    Hung, Pei -Ken
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (10) : 8683 - 8702
  • [38] SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW
    Drugan, Gregory
    Lee, Hojoo
    Wheeler, Glen
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (02) : 309 - 326
  • [39] Hyperbolic Inverse Mean Curvature Flow
    Jing Mao
    Chuan-Xi Wu
    Zhe Zhou
    Czechoslovak Mathematical Journal, 2020, 70 : 33 - 66
  • [40] Hyperbolic Inverse Mean Curvature Flow
    Mao, Jing
    Wu, Chuan-Xi
    Zhou, Zhe
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 33 - 66