Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks

被引:7
|
作者
Ropelewska, Ewa
Skwiercz, Andrzej [1 ]
Sobczak, Miroslaw [2 ]
机构
[1] Natl Inst Hort Res, Dept Plant Protect, Konstytucji 3 Maja 1-3, PL-96100 Skierniewice, Poland
[2] Warsaw Univ Life Sci, Inst Biol, Dept Bot, SGGW, Nowoursynowska 159, PL-02776 Warsaw, Poland
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 09期
基金
英国科研创新办公室;
关键词
cyst nematodes; Globodera; Heterodera; distinguishing; texture parameters; machine learning; HETERODERA-SCHACHTII; GLOBODERA-PALLIDA; POPULATIONS;
D O I
10.3390/agronomy13092277
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Cyst nematodes are plant parasitic nematodes infecting crops, causing extensive crop damage and annual losses, and affecting food production. The precise species identification is significant to initiate their control. The repeatable, less expensive, and less laborious distinguishing cyst nematode species using image processing and artificial intelligence can be advantageous. The objective of this study was to distinguish cyst nematodes belonging to the species Globodera pallida, Globodera rostochiensis, and Heterodera schachtii based on image parameters using artificial neural networks (ANN). The application of parameters selected from a set of 2172 textures of images in color channels L, a, b, X, Y, Z, R, G, B, V, U, and S to build classification models using a narrow neural network, medium neural network, wide neural network, trilayered neural network, WiSARD, multilayer perceptron, and RBF network is a great novelty of the present study. Algorithms allowed for distinguishing cyst nematode species with an average accuracy reaching 89.67% for a model developed using WiSARD. The highest correctness was obtained for H. schachtii and this species was distinguished from each other with the highest accuracy of 95-98% depending on the classifier. Whereas the highest number of misclassified cases occurred between G. pallida, G. rostochiensis belonging to the same genus Globodera. The developed procedure involving image parameters and artificial neural networks can be useful for non-destructive and objective distinguishing cyst nematode species.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Distinguishing Chemicals Using CMUT Chemical Sensor Array and Artificial Neural Networks
    Stedman, Quintin
    Park, Kwan-Kyu
    Khuri-Yakub, Butrus T.
    2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 162 - 165
  • [2] Combining Spiking Neural Networks with Artificial Neural Networks for Enhanced Image Classification
    Muramatsu, Naoya
    Yu, Hai-Tao
    Satoh, Tetsuji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (02) : 252 - 261
  • [3] Classification of liquid crystal textures using convolutional neural networks
    Dierking, Ingo
    Dominguez, Jason
    Harbon, James
    Heaton, Joshua
    LIQUID CRYSTALS, 2023, 50 (7-10) : 1526 - 1540
  • [4] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [5] Morphometric shape analysis using learning vector quantization neural networks - an example distinguishing two microtine vole species
    van den Brink, Valentijn
    Bokma, Folmer
    ANNALES ZOOLOGICI FENNICI, 2011, 48 (06) : 359 - 364
  • [6] Identification of potato cyst nematode species Globodera rostochiensis and G-pallida by PCR using specific primer combinations
    Fullaondo, A
    Barrena, E
    Viribay, M
    Barrena, I
    Salazar, A
    Ritter, E
    NEMATOLOGY, 1999, 1 : 157 - 163
  • [7] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [8] Image-Based Macroscopic Classification of Aspergillus Fungi Species Using Convolutional Neural Networks
    Billones, Robert Kerwin C.
    Calilung, Edwin J.
    Dadios, Elmer P.
    Santiago, Nelson
    2020 IEEE 12TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2020,
  • [9] Accelerating Retinal Fundus Image Classification Using Artificial Neural Networks (ANNs) and Reconfigurable Hardware (FPGA)
    Ghani, Arfan
    See, Chan H.
    Sudhakaran, Vaisakh
    Ahmad, Jahanzeb
    Abd-Alhameed, Raed
    ELECTRONICS, 2019, 8 (12)
  • [10] Conversion Factor Estimation of Stacked Eucalypt Timber Using Supervised Image Classification with Artificial Neural Networks
    de Barros, Vinicius Andrade
    Soares, Carlos Pedro Boechat
    da Silva, Gilson Fernandes
    Casas, Gianmarco Goycochea
    Leite, Helio Garcia
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2024, 32 (04): : 1527 - 1543