SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification

被引:6
|
作者
Liu, Ke [1 ,2 ]
Yang, Mingzhao [1 ]
Xing, Xin [1 ]
Yu, Zhuliang [3 ]
Wu, Wei [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Key Lab Big Data Intelligent Comp, Chongqing 400065, Peoples R China
[3] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
[4] Alto Neurosci Inc, Los Altos, CA 94022 USA
基金
中国国家自然科学基金;
关键词
brain-computer interface (BCI); electroencephalography (EEG); motor imagery; convolutional neural network; Sinc filter; spatio-temporal filtering;
D O I
10.1088/1741-2552/acf7f4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Motor imagery (MI) is widely used in brain-computer interfaces (BCIs). However, the decode of MI-EEG using convolutional neural networks (CNNs) remains a challenge due to individual variability. Approach. We propose a fully end-to-end CNN called SincMSNet to address this issue. SincMSNet employs the Sinc filter to extract subject-specific frequency band information and utilizes mixed-depth convolution to extract multi-scale temporal information for each band. It then applies a spatial convolutional block to extract spatial features and uses a temporal log-variance block to obtain classification features. The model of SincMSNet is trained under the joint supervision of cross-entropy and center loss to achieve inter-class separable and intra-class compact representations of EEG signals. Main results. We evaluated the performance of SincMSNet on the BCIC-IV-2a (four-class) and OpenBMI (two-class) datasets. SincMSNet achieves impressive results, surpassing benchmark methods. In four-class and two-class inter-session analysis, it achieves average accuracies of 80.70% and 71.50% respectively. In four-class and two-class single-session analysis, it achieves average accuracies of 84.69% and 76.99% respectively. Additionally, visualizations of the learned band-pass filter bands by Sinc filters demonstrate the network's ability to extract subject-specific frequency band information from EEG. Significance. This study highlights the potential of SincMSNet in improving the performance of MI-EEG decoding and designing more robust MI-BCIs. The source code for SincMSNet can be found at: https://github.com/Want2Vanish/SincMSNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Convolutional neural network based features for motor imagery EEG signals classification in brain-computer interface system
    Taheri, Samaneh
    Ezoji, Mehdi
    Sakhaei, Sayed Mahmoud
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [32] EEG Classification of Forearm Movement Imagery Using a Hierarchical Flow Convolutional Neural Network
    Jeong, Ji-Hoon
    Lee, Byeong-Hoo
    Lee, Dae-Hyeok
    Yun, Yong-Deok
    Lee, Seong-Whan
    IEEE ACCESS, 2020, 8 : 66941 - 66950
  • [33] CTNet: a convolutional transformer network for EEG-based motor imagery classification
    Zhao, Wei
    Jiang, Xiaolu
    Zhang, Baocan
    Xiao, Shixiao
    Weng, Sujun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Motor Imagery Task Classification in EEG Signals with Spiking Neural Network
    Virgilio, Carlos D. G.
    Sossa, Humberto
    Antelis, Javier M.
    Falcon, Luis E.
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 14 - 24
  • [35] A convolutional spiking neural network with adaptive coding for motor imagery classification
    Liao, Xiaojian
    Wu, Yuli
    Wang, Zi
    Wang, Deheng
    Zhang, Hongmiao
    NEUROCOMPUTING, 2023, 549
  • [36] Classification of Motor Imagery Signals by Convolutional Neural Network for BCI Applications
    Balim, Mustafa Alper
    Acir, Nurettin
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [37] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [38] A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding
    Zhi, Hongyi
    Yu, Zhuliang
    Yu, Tianyou
    Gu, Zhenghui
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3988 - 3998
  • [39] A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
    Echtioui, Amira
    Mlaouah, Ayoub
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [40] A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification
    Yang, Guangyu
    Liu, Jinguo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96