Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth

被引:24
作者
Berrios, Louis [1 ]
Yeam, Jay [1 ]
Holm, Lindsey [2 ]
Robinson, Wallis [3 ]
Pellitier, Peter T. [1 ]
Chin, Mei Lin [4 ]
Henkel, Terry W. [4 ]
Peay, Kabir G. [1 ,5 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] POB 702, Arcata, CA 95518 USA
[3] Univ Calif Cooperat Extens Humboldt & Norte Cty, Forestry & Forest Hlth Program, Eureka, CA 95503 USA
[4] Calif State Polytech Univ, Dept Biol Sci, Arcata, CA 95521 USA
[5] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
NITROGEN-FIXING BACTERIA; ECTOMYCORRHIZAL SYMBIOSIS; HELPER BACTERIA; COMMUNITY STRUCTURE; ACACIA-HOLOSERICEA; MICROBIOME; EXPRESSION; PATTERNS; ECOLOGY; ESTABLISHMENT;
D O I
10.1016/j.cub.2023.06.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been ad-dressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colo-nized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbi-oses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate wide-spread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.
引用
收藏
页码:2878 / +
页数:15
相关论文
共 90 条
[21]   A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species [J].
Duponnois, R ;
Plenchette, C .
MYCORRHIZA, 2003, 13 (02) :85-91
[22]   Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi [J].
Emmett, Bryan D. ;
Levesque-Tremblay, Veronique ;
Harrison, Maria J. .
ISME JOURNAL, 2021, 15 (08) :2276-2288
[23]   Transcriptional acclimation and spatial differentiation characterize drought response by the ectomycorrhizal fungus Suillus pungens [J].
Erlandson, Sonya R. ;
Margis, Rogerio ;
Ramirez, Andrea ;
Nguyen, Nhu ;
Lofgren, Lotus A. ;
Liao, Hui-Ling ;
Vilgalys, Rytas ;
Kennedy, Peter G. ;
Peay, Kabir G. .
NEW PHYTOLOGIST, 2022, 234 (06) :1910-1913
[24]   The Plant Microbiome: From Ecology to Reductionism and Beyond [J].
Fitzpatrick, Connor R. ;
Salas-Gonzalez, Isai ;
Conway, Jonathan M. ;
Finkel, Omri M. ;
Gilbert, Sarah ;
Russ, Dor ;
Pereira Lima Teixeira, Paulo Jose ;
Dangl, Jeffery L. .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 74, 2020, 2020, 74 :81-+
[25]   Assembly and ecological function of the root microbiome across angiosperm plant species [J].
Fitzpatrick, Connor R. ;
Copeland, Julia ;
Wang, Pauline W. ;
Guttman, David S. ;
Kotanen, Peter M. ;
Johnson, Marc T. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (06) :E1157-E1165
[26]   Mycorrhiza Helper Bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba [J].
Founoune, H ;
Duponnois, R ;
Bâ, AM ;
Sall, S ;
Branget, I ;
Lorquin, J ;
Neyra, M ;
Chotte, JL .
NEW PHYTOLOGIST, 2002, 153 (01) :81-89
[27]   The mycorrhiza helper bacteria revisited [J].
Frey-Klett, P. ;
Garbaye, J. ;
Tarkka, M. .
NEW PHYTOLOGIST, 2007, 176 (01) :22-36
[28]   Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and douglas fir [J].
FreyKlett, P ;
Pierrat, JC ;
Garbaye, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (01) :139-144
[29]   HELPER BACTERIA - A NEW DIMENSION TO THE MYCORRHIZAL SYMBIOSIS [J].
GARBAYE, J .
NEW PHYTOLOGIST, 1994, 128 (02) :197-210
[30]   Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses [J].
Garcia, Kevin ;
Delaux, Pierre-Marc ;
Cope, Kevin R. ;
Ane, Jean-Michel .
NEW PHYTOLOGIST, 2015, 208 (01) :79-87