OSCILLATION AND NONOSCILLATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

被引:0
|
作者
Guerraiche, Nassim [1 ]
Hamani, Samira [2 ]
Henderson, Johnny [3 ]
机构
[1] Univ Constantine 2, Dept Informat Fondamentale & ses Applicat, BP 67A, Constantine, Algeria
[2] Univ Mostaganem, Lab Math Appl & Pures, BP 227, Mostaganem 27000, Algeria
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
FIXED POINT THEORY | 2023年 / 24卷 / 02期
关键词
Existence; oscillatory; nonoscillatory; fractional differential inclusions; Caputo-Hadamard type derivative; fixed point; measure of noncompactness;
D O I
10.24193/fpt-ro.2023.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r & ISIN; (1, 2], we establish sufficient conditions for the existence of oscillatory and nonoscillatory solutions to a boundary value problem for an rth order Caputo-Hadamard fractional differential inclusion in a Banach space. Our approach is based upon the set-valued analog of Mo & BULL;nch's fixed point theorem combined with the technique of measure of noncompactness.
引用
收藏
页码:611 / 626
页数:16
相关论文
共 50 条
  • [31] Caputo-Hadamard fractional boundary-value problems in L P-spaces
    Murad, Shayma Adil
    Rafeeq, Ava Shafeeq
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2024, 9 (07): : 17464 - 17488
  • [32] ON CONTROLLABILITY FOR FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Wang, JinRong
    Li, XueZhu
    Wei, Wei
    OPUSCULA MATHEMATICA, 2012, 32 (02) : 341 - 356
  • [33] Coupled fractional differential equations involving Caputo-Hadamard derivative with nonlocal boundary conditions
    Nain, Ankit
    Vats, Ramesh
    Kumar, Avadhesh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 4192 - 4204
  • [34] COUPLED SYSTEMS OF HILFER FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Graef, John R.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2479 - 2493
  • [35] Implicit fractional differential equations with Φ-Caputo fractional derivative in Banach spaces
    Baitiche, Zidane
    Derbazi, Choukri
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1237 - 1252
  • [36] BOUNDARY VALUE PROBLEM FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATION WITH HADAMARD FRACTIONAL INTEGRAL AND ANTI-PERIODIC CONDITIONS
    Boutiara, Abdelatif
    Benbachir, Maamar
    Guerbati, Kaddour
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 735 - 748
  • [37] COUPLED HILFER AND HADAMARD FRACTIONAL DIFFERENTIAL SYSTEMS IN GENERALIZED BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Petrusel, Adrian
    FIXED POINT THEORY, 2022, 23 (01): : 21 - 34
  • [39] On Impulsive Fractional Differential Inclusions with a Nonconvex-valued Multimap in Banach Spaces
    Obukhovskii, V.
    Petrosyan, G.
    Soroka, M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (04) : 1482 - 1494
  • [40] Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations
    Alruwaily, Ymnah
    Venkatachalam, Kuppusamy
    El-hady, El-sayed
    FRACTAL AND FRACTIONAL, 2023, 7 (12)