OSCILLATION AND NONOSCILLATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

被引:0
|
作者
Guerraiche, Nassim [1 ]
Hamani, Samira [2 ]
Henderson, Johnny [3 ]
机构
[1] Univ Constantine 2, Dept Informat Fondamentale & ses Applicat, BP 67A, Constantine, Algeria
[2] Univ Mostaganem, Lab Math Appl & Pures, BP 227, Mostaganem 27000, Algeria
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
FIXED POINT THEORY | 2023年 / 24卷 / 02期
关键词
Existence; oscillatory; nonoscillatory; fractional differential inclusions; Caputo-Hadamard type derivative; fixed point; measure of noncompactness;
D O I
10.24193/fpt-ro.2023.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r & ISIN; (1, 2], we establish sufficient conditions for the existence of oscillatory and nonoscillatory solutions to a boundary value problem for an rth order Caputo-Hadamard fractional differential inclusion in a Banach space. Our approach is based upon the set-valued analog of Mo & BULL;nch's fixed point theorem combined with the technique of measure of noncompactness.
引用
收藏
页码:611 / 626
页数:16
相关论文
共 50 条
  • [21] EXISTENCE AND STABILITY FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Haoues, M.
    Ardjouni, A.
    Djoudi, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 225 - 242
  • [22] Convergence analysis of positive solution for Caputo-Hadamard fractional differential equation
    Guo, Limin
    Li, Cheng
    Qiao, Nan
    Zhao, Jingbo
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2025, 30 (02): : 212 - 230
  • [23] Existence and uniqueness results on coupled Caputo-Hadamard fractional differential equations in a bounded domain
    Buvaneswari, Karthikeyan
    Karthikeyan, Panjaiyan
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    FILOMAT, 2024, 38 (04) : 1489 - 1496
  • [24] Impulsive fractional differential equations with state-dependent delay involving the Caputo-Hadamard derivative
    Hammou, Amouria
    Hamani, Samira
    Henderson, Johnny
    FILOMAT, 2023, 37 (05) : 1581 - 1590
  • [25] Results on non local impulsive implicit Caputo-Hadamard fractional differential equations
    Venkatachalam, K.
    Kumar, M. Sathish
    Jayakumar, P.
    MATHEMATICAL MODELLING AND CONTROL, 2024, 4 (03): : 286 - 296
  • [26] On Systems of Differential Inclusions of Fractional Order in Banach Spaces
    V. V. Obukhovskii
    M. I. Kamenskii
    G. G. Petrosyan
    T. A. Ul’vacheva
    S. Zeng
    Siberian Mathematical Journal, 2025, 66 (2) : 303 - 314
  • [27] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR CAPUTO-HADAMARD SEQUENTIAL FRACTIONAL ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [28] The general solution of differential equations with Caputo-Hadamard fractional derivatives and impulsive effect
    Zhang, Xianmin
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [29] Multiterm Impulsive Caputo-Hadamard Type Differential Equations of Fractional Variable Order
    Benkerrouche, Amar
    Souid, Mohammed Said
    Stamov, Gani
    Stamova, Ivanka
    AXIOMS, 2022, 11 (11)
  • [30] A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces
    Wang, JinRong
    Ibrahim, A. G.
    O'Regan, D.
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,