CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES

被引:2
作者
Drihem, D. [1 ]
机构
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, Msila 28000, Algeria
来源
EURASIAN MATHEMATICAL JOURNAL | 2023年 / 14卷 / 02期
关键词
Besov spaces; Triebel-Lizorkin spaces; Morrey spaces; Herz spaces; Caffarelli-Kohn-Nirenb erg inequalities; HERZ-TYPE BESOV; MORREY SPACES; CLASSICAL OPERATORS; RECENT PROGRESS; NAVIER-STOKES; REAL ANALYSIS; INTERPOLATION; BOUNDEDNESS; EMBEDDINGS; EQUATIONS;
D O I
10.32523/2077-9879-2023-14-2-24-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate the inequalities f k 1,r v,  c f 1- K 2, u f  K 3,1 p As and f E p,2,u c f 1- M & mu;f Nqs,,v,with some appropriate assumptions on the parameters, where k 1,r v, are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if a1 = 0,1 < r = v < and a N0, and Kp 3,1As  are Besov or Triebel-Lizorkin spaces if a3 = 0 and 6.1 = p. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sob olev inequalities are given.
引用
收藏
页码:24 / 57
页数:46
相关论文
共 50 条
[41]   Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature [J].
Van Hoang Nguyen .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (01) :102-127
[42]   POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS RELATED TO THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES [J].
Deng, Yinbin ;
Jin, Lingyu ;
Peng, Shuangjie .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (02) :185-199
[43]   Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations [J].
Bu, Fan ;
Hytonen, Tuomas ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ANNALEN, 2025, 391 (04) :6105-6185
[44]   Existence of solutions for a class of critical Kirchhoff type problems involving Caffarelli-Kohn-Nirenberg inequalities [J].
Nguyen Thanh Chung .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02) :589-603
[45]   JAWERTH-FRANKE EMBEDDINGS OF HERZ-TYPE BESOV AND TRIEBEL-LIZORKIN SPACES [J].
Drihem, Douadi .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) :207-226
[46]   Conic type Caffarelli-Kohn-Nirenberg inequality on manifold with conical singularity [J].
Jafari, Ali Asghar ;
Alimohammady, Mohsen .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) :915-927
[47]   Non-smooth atomic decomposition of Triebel-Lizorkin-type spaces [J].
Sawano, Yoshihiro ;
Yang, Dachun ;
Yuan, Wen .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
[48]   Haar functions in weighted Besov and Triebel-Lizorkin spaces [J].
Malecka, Agnieszka .
JOURNAL OF APPROXIMATION THEORY, 2015, 200 :1-27
[49]   A Note About a Caffarelli-Kohn-Nirenberg Type Inequality for Euclidean Submanifolds [J].
Batista, M. ;
Mirandola, H. ;
Vitorio, F. .
RESULTS IN MATHEMATICS, 2023, 78 (03)
[50]   On the sharp second order Caffarelli-Kohn-Nirenberg inequality [J].
Duong, Anh Tuan ;
Nguyen, Van Hoang .
ANNALES FENNICI MATHEMATICI, 2025, 50 (01) :275-286