CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES

被引:1
作者
Drihem, D. [1 ]
机构
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, Msila 28000, Algeria
来源
EURASIAN MATHEMATICAL JOURNAL | 2023年 / 14卷 / 02期
关键词
Besov spaces; Triebel-Lizorkin spaces; Morrey spaces; Herz spaces; Caffarelli-Kohn-Nirenb erg inequalities; HERZ-TYPE BESOV; MORREY SPACES; CLASSICAL OPERATORS; RECENT PROGRESS; NAVIER-STOKES; REAL ANALYSIS; INTERPOLATION; BOUNDEDNESS; EMBEDDINGS; EQUATIONS;
D O I
10.32523/2077-9879-2023-14-2-24-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate the inequalities f k 1,r v,  c f 1- K 2, u f  K 3,1 p As and f E p,2,u c f 1- M & mu;f Nqs,,v,with some appropriate assumptions on the parameters, where k 1,r v, are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if a1 = 0,1 < r = v < and a N0, and Kp 3,1As  are Besov or Triebel-Lizorkin spaces if a3 = 0 and 6.1 = p. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sob olev inequalities are given.
引用
收藏
页码:24 / 57
页数:46
相关论文
共 50 条
[31]   Attractors for parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities [J].
Nguyen Dinh Binh ;
Cung The Anh .
Boundary Value Problems, 2012
[32]   Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means [J].
Yang, Dachun ;
Yuan, Wen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) :3805-3820
[33]   EMBEDDINGS PROPERTIES ON HERZ-TYPE BESOV AND TRIEBEL-LIZORKIN SPACES [J].
Drihem, Douadi .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02) :439-460
[34]   On the stability of the Caffarelli-Kohn-Nirenberg inequality [J].
Wei, Juncheng ;
Wu, Yuanze .
MATHEMATISCHE ANNALEN, 2022, 384 (3-4) :1509-1546
[35]   Maximizers for Fractional Caffarelli-Kohn-Nirenberg and Trudinger-Moser Inequalities on the Fractional Sobolev Spaces [J].
Chen, Lu ;
Lu, Guozhen ;
Zhang, Caifeng .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) :3556-3582
[36]   A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities [J].
Kendell, Steven ;
Lam, Nguyen ;
Smith, Dylan ;
White, Austin ;
Wiseman, Parker .
AIMS MATHEMATICS, 2023, 8 (11) :27983-27988
[37]   Classification of radial solutions to equations related to Caffarelli-Kohn-Nirenberg inequalities [J].
Villavert, John .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) :299-315
[38]   On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Peral, I .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (04) :539-566
[39]   Results on parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities [J].
Dall'aglio, A ;
Giachetti, D ;
Peral, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :691-716
[40]   Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature [J].
Van Hoang Nguyen .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (01) :102-127