共 50 条
CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES
被引:2
作者:
Drihem, D.
[1
]
机构:
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, Msila 28000, Algeria
来源:
EURASIAN MATHEMATICAL JOURNAL
|
2023年
/
14卷
/
02期
关键词:
Besov spaces;
Triebel-Lizorkin spaces;
Morrey spaces;
Herz spaces;
Caffarelli-Kohn-Nirenb erg inequalities;
HERZ-TYPE BESOV;
MORREY SPACES;
CLASSICAL OPERATORS;
RECENT PROGRESS;
NAVIER-STOKES;
REAL ANALYSIS;
INTERPOLATION;
BOUNDEDNESS;
EMBEDDINGS;
EQUATIONS;
D O I:
10.32523/2077-9879-2023-14-2-24-57
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate the inequalities f k 1,r v, c f 1- K 2, u f K 3,1 p As and f E p,2,u c f 1- M & mu;f Nqs,,v,with some appropriate assumptions on the parameters, where k 1,r v, are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if a1 = 0,1 < r = v < and a N0, and Kp 3,1As are Besov or Triebel-Lizorkin spaces if a3 = 0 and 6.1 = p. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sob olev inequalities are given.
引用
收藏
页码:24 / 57
页数:46
相关论文
共 50 条