CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES

被引:1
作者
Drihem, D. [1 ]
机构
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, Msila 28000, Algeria
来源
EURASIAN MATHEMATICAL JOURNAL | 2023年 / 14卷 / 02期
关键词
Besov spaces; Triebel-Lizorkin spaces; Morrey spaces; Herz spaces; Caffarelli-Kohn-Nirenb erg inequalities; HERZ-TYPE BESOV; MORREY SPACES; CLASSICAL OPERATORS; RECENT PROGRESS; NAVIER-STOKES; REAL ANALYSIS; INTERPOLATION; BOUNDEDNESS; EMBEDDINGS; EQUATIONS;
D O I
10.32523/2077-9879-2023-14-2-24-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate the inequalities f k 1,r v,  c f 1- K 2, u f  K 3,1 p As and f E p,2,u c f 1- M & mu;f Nqs,,v,with some appropriate assumptions on the parameters, where k 1,r v, are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if a1 = 0,1 < r = v < and a N0, and Kp 3,1As  are Besov or Triebel-Lizorkin spaces if a3 = 0 and 6.1 = p. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sob olev inequalities are given.
引用
收藏
页码:24 / 57
页数:46
相关论文
共 50 条