CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES

被引:2
作者
Drihem, D. [1 ]
机构
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, Msila 28000, Algeria
来源
EURASIAN MATHEMATICAL JOURNAL | 2023年 / 14卷 / 02期
关键词
Besov spaces; Triebel-Lizorkin spaces; Morrey spaces; Herz spaces; Caffarelli-Kohn-Nirenb erg inequalities; HERZ-TYPE BESOV; MORREY SPACES; CLASSICAL OPERATORS; RECENT PROGRESS; NAVIER-STOKES; REAL ANALYSIS; INTERPOLATION; BOUNDEDNESS; EMBEDDINGS; EQUATIONS;
D O I
10.32523/2077-9879-2023-14-2-24-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate the inequalities f k 1,r v,  c f 1- K 2, u f  K 3,1 p As and f E p,2,u c f 1- M & mu;f Nqs,,v,with some appropriate assumptions on the parameters, where k 1,r v, are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if a1 = 0,1 < r = v < and a N0, and Kp 3,1As  are Besov or Triebel-Lizorkin spaces if a3 = 0 and 6.1 = p. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sob olev inequalities are given.
引用
收藏
页码:24 / 57
页数:46
相关论文
共 50 条
[21]   Caffarelli-Kohn-Nirenberg inequalities on Lie groups of polynomial growth [J].
Yacoub, Chokri .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (01) :204-214
[22]   Localization property of generalized Besov-type spaces, Triebel-Lizorkin-type spaces and their associated multiplier spaces [J].
Djeriou, Aissa .
FILOMAT, 2024, 38 (07) :2261-2275
[23]   Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities [J].
Dolbeault, Jean ;
Esteban, Maria J. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (04) :745-767
[24]   Symmetry breaking of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities [J].
Byeon, J ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (03) :457-465
[25]   Short proofs of refined sharp Caffarelli-Kohn-Nirenberg inequalities [J].
Cazacu, Cristian ;
Flynn, Joshua ;
Lam, Nguyen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 :533-549
[26]   SHARP CAFFARELLI-KOHN-NIRENBERG INEQUALITIES ON STRATIFIED LIE GROUPS [J].
Van Hoang Nguyen .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 :1073-1083
[27]   Symmetry for positive critical points of Caffarelli-Kohn-Nirenberg inequalities [J].
Ciraolo, Giulio ;
Corso, Rosario .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
[28]   Sharp Constants and Optimizers for a Class of Caffarelli-Kohn-Nirenberg Inequalities [J].
Lam, Nguyen ;
Lu, Guozhen .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :457-480
[29]   Attractors for parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities [J].
Nguyen Dinh Binh ;
Cung The Anh .
BOUNDARY VALUE PROBLEMS, 2012,
[30]   Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities [J].
Musina, Roberta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :3002-3007