Light field super-resolution using complementary-view feature attention

被引:12
作者
Zhang, Wei [1 ]
Ke, Wei [1 ]
Yang, Da [2 ,3 ]
Sheng, Hao [1 ,2 ,3 ]
Xiong, Zhang [1 ,2 ,3 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beihang Hangzhou Innovat Inst Yuhang, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
light field (LF); super-resolution (SR); attention; NETWORK;
D O I
10.1007/s41095-022-0297-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Light field (LF) cameras record multiple perspectives by a sparse sampling of real scenes, and these perspectives provide complementary information. This information is beneficial to LF super-resolution (LFSR). Compared with traditional single-image super-resolution, LF can exploit parallax structure and perspective correlation among different LF views. Furthermore, the performance of existing methods are limited as they fail to deeply explore the complementary information across LF views. In this paper, we propose a novel network, called the light field complementary-view feature attention network (LF-CFANet), to improve LFSR by dynamically learning the complementary information in LF views. Specifically, we design a residual complementary-view spatial and channel attention module (RCSCAM) to effectively interact with complementary information between complementary views. Moreover, RCSCAM captures the relationships between different channels, and it is able to generate informative features for reconstructing LF images while ignoring redundant information. Then, a maximum-difference information supplementary branch (MDISB) is used to supplement information from the maximum-difference angular positions based on the geometric structure of LF images. This branch also can guide the process of reconstruction. Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method. The proposed LF-CFANet has a more advanced reconstruction performance that displays faithful details with higher SR accuracy than state-of-the-art methods.
引用
收藏
页码:843 / 858
页数:16
相关论文
共 48 条
[1]  
Alain M, 2018, IEEE IMAGE PROC, P2501, DOI 10.1109/ICIP.2018.8451162
[2]   The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution [J].
Bishop, Tom E. ;
Favaro, Paolo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (05) :972-986
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[7]   A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields [J].
Honauer, Katrin ;
Johannsen, Ole ;
Kondermann, Daniel ;
Goldluecke, Bastian .
COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 :19-34
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]  
Huang F.C., 2015, ACM SIGGRAPH 2015 Emerging Technologies, SIGGRAPH, V34, P1
[10]  
Huang Y, 2015, ADV NEUR IN, V28