Calycosin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice through the miR-375-3p/ROCK2 Axis

被引:2
|
作者
Yao, Jie [1 ,2 ]
Cheng, Mingfeng [1 ]
Yang, Fan [1 ]
机构
[1] Fujian Tradit Med Univ, Dept Intens Care Unit, Peoples Hosp, Fuzhou, Fujian, Peoples R China
[2] Fujian Tradit Med Univ, Dept Intens Care unit, Peoples Hosp, Fuzhou 350004, Fujian, Peoples R China
关键词
acute lung injury; sepsis; calycosin; miR-375-3p; ROCK2; SEPSIS; MIR-375;
D O I
10.1080/08941939.2023.2211166
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective: Septic patients are especially vulnerable to acute lung injury (ALI). Calycosin (CAL) has various promising pharmacological activities. This paper aims to expound on the role of CAL in mice with sepsis-induced ALI and the associated mechanisms. Methods: Mouse models of sepsis-induced ALI were established using lipopolysaccharide (LPS). Pulmonary histopathological changes were observed by HE staining. Cell apoptosis was assessed by TUNEL staining. Pulmonary edema was evaluated by measuring wet/dry weight. Bronchoalveolar lavage fluid (BALF) was collected to count inflammatory cells. In vitro LPS models were established using MLE-12 cells. miR-375-3p expression was determined by RT-qPCR. Cell viability and apoptosis were assessed by MTT assay and flow cytometry. Levels of inflammatory cytokines were determined by ELISA. The target relationship between miR-375-3p and ROCK2 was analyzed by the dual-luciferase assay. ROCK2 protein level was determined by Western blot. Results: miR-375-3p was weakly-expressed in mice with sepsis-induced ALI, and CAL treatment elevated miR-375-3p expression. CAL treatment mitigated pulmonary tissue damage and edema, decreased apoptosis and inflammatory cells, downregulated levels of pro-inflammatory cytokines, and upregulated levels of anti-inflammatory cytokines in mice with sepsis-induced ALI. CAL treatment increased MLE-12 cell viability and decreased apoptosis and inflammation in MLE-12 cells. Inhibition of miR-375-3p partially abrogated CAL-mediated protective action on MLE-12 cells. miR-375-3p attenuated LPS-induced MLE-12 cell injury by targeting ROCK2. Conclusion: CAL upregulates miR-375-3p to target ROCK2, thus protecting against sepsis-induced ALI in mice.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] LncRNA SNHG1 knockdown attenuates lipopolysaccharide-induced acute lung injury via regulating miR199a-3p/ROCK2 axis
    Qian, Wei
    Han, Yan
    Jin, Yan
    Lei, Changjiang
    Lin, Xue
    GENERAL PHYSIOLOGY AND BIOPHYSICS, 2024, 43 (05) : 399 - 409
  • [2] Fucosterol attenuates lipopolysaccharide-induced acute lung injury in mice
    Li, Yuexia
    Li, Xiaohui
    Liu, Gang
    Sun, Rongqing
    Wang, Lirui
    Wang, Jing
    Wang, Hongmin
    JOURNAL OF SURGICAL RESEARCH, 2015, 195 (02) : 515 - 521
  • [3] Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice
    Xie, Xianxing
    Sun, Shicheng
    Zhong, Weiting
    Soromou, Lanan Wassy
    Zhou, Xuan
    Wei, Miaomiao
    Ren, Yanling
    Ding, Yu
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2014, 19 (01) : 103 - 109
  • [4] LIRAGLUTIDE ATTENUATES LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY IN MICE
    Zhang, Ying
    Li, Jianguo
    Peng, Zhiyong
    CRITICAL CARE MEDICINE, 2016, 44 (12)
  • [5] AMPHIREGULIN ATTENUATES LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY IN MICE
    Ogata, Saiko
    Hamada, Naoki
    Inoshima, Ichiro
    Yokoyama, Tetsuya
    Suzuki, Kunihiro
    Kudoh, Kunihiro
    Mikumo, Hironori
    Mizuta, Yuichi
    Maeyama, Takashige
    Kuwano, Kazuyoshi
    Nakanishi, Yoichi
    RESPIROLOGY, 2013, 18 : 200 - 200
  • [6] Shikonin attenuates lipopolysaccharide-induced acute lung injury in mice
    Bai, Guang-Zhen
    Yu, Hai-Tao
    Ni, Yun-Feng
    Li, Xiao-Fei
    Zhang, Zhi-Pei
    Su, Kai
    Lei, Jie
    Liu, Bo-Ya
    Ke, Chang-Kang
    Zhong, Dai-Xing
    Wang, Yun-Jie
    Zhao, Jin-Bo
    JOURNAL OF SURGICAL RESEARCH, 2013, 182 (02) : 303 - 311
  • [7] Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice
    Zhou, Feng
    Zhang, Ying
    Chen, Jing
    Hu, Xuemei
    Xu, Yancheng
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 791 : 735 - 740
  • [8] Methyl palmitate attenuates lipopolysaccharide-induced acute lung injury in mice
    Kalemci, S.
    Zeybek, A.
    Intepe, Y. S.
    Uner, A. G.
    Acar, T.
    Yaylali, A.
    Aksun, S.
    Can, C.
    Gulaydin, A.
    Sutcu, R.
    CLINICA TERAPEUTICA, 2013, 164 (06): : E453 - E459
  • [9] Protostemonine effectively attenuates lipopolysaccharide-induced acute lung injury in mice
    Wu, Ya-xian
    He, Hui-qiong
    Nie, Yun-juan
    Ding, Yun-he
    Sun, Lei
    Qian, Feng
    ACTA PHARMACOLOGICA SINICA, 2018, 39 (01) : 85 - 96
  • [10] Valproic Acid Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice
    Mu-huo Ji
    Guo-min Li
    Min Jia
    Si-hai Zhu
    Da-peng Gao
    Yun-xia Fan
    Jing Wu
    Jian-jun Yang
    Inflammation, 2013, 36 : 1453 - 1459