An Overview of Key SLAM Technologies for Underwater Scenes

被引:24
作者
Wang, Xiaotian [1 ]
Fan, Xinnan [2 ]
Shi, Pengfei [2 ]
Ni, Jianjun [2 ]
Zhou, Zhongkai [2 ]
机构
[1] Hohai Univ, Sch Comp & Informat, Nanjing 210000, Peoples R China
[2] Hohai Univ, Sch Informat Sci & Engn, Changzhou 213002, Peoples R China
基金
国家重点研发计划;
关键词
underwater vehicles; SLAM; vision sensors; acoustic sensors; deep learning; DEEP NEURAL-NETWORKS; SIMULTANEOUS LOCALIZATION; VISUAL SLAM; LOOP-CLOSURE; MAPPING SLAM; ODOMETRY; ROBUST; RECOGNITION; NAVIGATION; VERSATILE;
D O I
10.3390/rs15102496
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Autonomous localization and navigation, as an essential research area in robotics, has a broad scope of applications in various scenarios. To widen the utilization environment and augment domain expertise, simultaneous localization and mapping (SLAM) in underwater environments has recently become a popular topic for researchers. This paper examines the key SLAM technologies for underwater vehicles and provides an in-depth discussion on the research background, existing methods, challenges, application domains, and future trends of underwater SLAM. It is not only a comprehensive literature review on underwater SLAM, but also a systematic introduction to the theoretical framework of underwater SLAM. The aim of this paper is to assist researchers in gaining a better understanding of the system structure and development status of underwater SLAM, and to provide a feasible approach to tackle the underwater SLAM problem.
引用
收藏
页数:28
相关论文
共 143 条
  • [11] Burguera A., 2022, LOCALIZATION MAPPING
  • [12] Combining Deep Learning and Robust Estimation for Outlier-Resilient Underwater Visual Graph SLAM
    Burguera, Antoni
    Bonin-Font, Francisco
    Font, Eric Guerrero
    Torres, Antoni Martorell
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (04)
  • [13] Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age
    Cadena, Cesar
    Carlone, Luca
    Carrillo, Henry
    Latif, Yasir
    Scaramuzza, Davide
    Neira, Jose
    Reid, Ian
    Leonard, John J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) : 1309 - 1332
  • [14] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [15] Carreno Y., 2021, P IJCAI WORKSHOP ROB
  • [16] LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM
    Cattaneo, Daniele
    Vaghi, Matteo
    Valada, Abhinav
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (04) : 2074 - 2093
  • [17] LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
    Chang, Yun
    Ebadi, Kamak
    Denniston, Christopher E.
    Ginting, Muhammad Fadhil
    Rosinol, Antoni
    Reinke, Andrzej
    Palieri, Matteo
    Shi, Jingnan
    Chatterjee, Arghya
    Morrell, Benjamin
    Agha-mohammadi, Ali-akbar
    Carlone, Luca
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 9175 - 9182
  • [18] Chen CH, 2020, Arxiv, DOI arXiv:2006.12567
  • [19] From topological map to local cognitive map: a new opportunity of local path planning
    Chen, Qingyang
    Lu, Yafei
    Wang, Yujie
    Zhu, Bingjie
    [J]. INTELLIGENT SERVICE ROBOTICS, 2021, 14 (02) : 285 - 301
  • [20] An Overview on Visual SLAM: From Tradition to Semantic
    Chen, Weifeng
    Shang, Guangtao
    Ji, Aihong
    Zhou, Chengjun
    Wang, Xiyang
    Xu, Chonghui
    Li, Zhenxiong
    Hu, Kai
    [J]. REMOTE SENSING, 2022, 14 (13)