An Unsupervised Machine Learning Based Double Sweet Spots Classification and Evaluation Method for Tight Reservoirs

被引:7
作者
Deng, Yuxuan [1 ]
Wang, Wendong [1 ]
Su, Yuliang [1 ]
Sun, Shibo [1 ]
Zhuang, Xinyu [1 ]
机构
[1] China Univ Petr East China, Sch Petr Engn, 66 Changjiang West Rd, Qingdao 266580, Peoples R China
来源
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME | 2023年 / 145卷 / 07期
基金
中国国家自然科学基金;
关键词
tight gas reservoirs; geological sweet spot; engineering sweet spot; machine learning; reservoir classification; SHALE OIL; GAS;
D O I
10.1115/1.4056727
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the increasing exploration and development of tight sandstone gas reservoirs, it is of utmost importance to clarify the characteristics of "sweet spots" within tight gas reservoirs. Considering the complex lithology of tight gas reservoirs, fast phase transformations of sedimentary facies, and vital diagenetic transformation, there is a low success rate of reservoir prediction in the lateral direction, and heterogeneity evaluation is challenging. Establishing a convenient standard for reservoir interpretation in the early stages of development is complex, making designing hydraulic fracturing in the later phases a challenge. In this paper, we propose a detailed study of the engineering and geological double sweet spots (DSS) analysis system and the optimization of sweet spot parameters using the independent weight coefficient method. K-means++ algorithm and Gaussian mixture gradient algorithm unsupervised machine learning algorithms are used to determine the classification standard of general reservoirs and high-quality sweet spot reservoirs in the lower 1 layer of He-8 in the x block of the Sulige gas field. This application of the field example illustrates that the proposed double sweet spot classification and evaluation method can be applied to locate the reservoir's sweet spot accurately.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
Abbas M.A., 2019, AB DHAB INT PETR EXH
[2]   Integrated geological and petrophysical characterization of oligocene deep marine unconventional poor to tight sandstone gas reservoir [J].
Abuamarah, Bassam A. ;
Nabawy, Bassem S. ;
Shehata, Ahmed M. ;
Kassem, Osama M. K. ;
Ghrefat, Habes .
MARINE AND PETROLEUM GEOLOGY, 2019, 109 :868-885
[3]   Sandstone reservoir quality prediction: The state of the art [J].
Ajdukiewicz, Joanna M. ;
Lander, Robert H. .
AAPG BULLETIN, 2010, 94 (08) :1083-1091
[4]   K-Mean Cluster Analysis for Better Determining the Sweet Spot Intervals of the Unconventional Organic-Rich Shale: A Case Study [J].
Akbar, Muhammad Nur Ali ;
Nugraha, Septian Tri .
CONTEMPORARY TRENDS IN GEOSCIENCE, 2018, 7 (02) :200-213
[5]  
Ambrose R.J., 2010, Society of Petroleum Engineers, DOI [DOI 10.2118/131772-MS, 10.2118/131772-MS]
[6]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[7]   A comprehensive approach to sweet-spot mapping for hydraulic fracturing and CO2 huff-n-puff injection in Chattanooga shale formation [J].
Cudjoe, Sherifa ;
Vinassa, Mauricio ;
Gomes, Joao Henrique Bessa ;
Barati, Reza Gh. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 33 :1201-1218
[8]  
Cui YD, 2018, ADV GEO-ENERGY RES, V2, P53, DOI [10.26804/ager.2018.01.05, 10.26804/ager.2018.01.05, DOI 10.26804/AGER.2018.01.05]
[9]  
Gharavi A., 2022, INT J INTELL NETW, V3, P87, DOI [10.1016/j.ijin.2022.08.001, DOI 10.1016/J.IJIN.2022.08.001]
[10]   Sweet spot evaluation and exploration practice of lacustrine shale oil of the second member of Kongdian Formation in Cangdong sag, Bohai Bay Basin [J].
Han Wenzhong ;
Zhao Xianzheng ;
Jin Fengming ;
Pu Xiugang ;
Chen Shiyue ;
Mu Liangang ;
Zhang Wei ;
Shi Zhannan ;
Wang Hu .
PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48 (04) :900-910