Plant growth-promoting rhizobacteria are important contributors to rice yield in karst soils

被引:2
|
作者
Pan, Jia-Yuan [1 ]
Wang, Chao-Bei [1 ]
Nong, Jie-Liang [1 ]
Xie, Qing-Lin [1 ]
Shen, Tai-Ming [2 ]
机构
[1] Guilin Univ Technol, Sch Environm Sci & Engn, Guilin 541004, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Energy & Bldg Environm, Guilin 541004, Peoples R China
关键词
PGPR; Rice; Growth-promoting; Karst area; CONTAMINATED SOILS; BACTERIAL STRAINS; ARSENIC-TOLERANT; RHIZOSPHERE; PHOSPHATE; ZINC;
D O I
10.1007/s13205-023-03593-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The difficulty of releasing nutrients from soils in karst areas limits the yield of local crops and leads to poverty. In this study, two strains of plant growth-promoting rhizobacteria (PGPR) were isolated from the rhizosphere soil of typical plants in karst areas, which were both identified as Bacillus sp. and named GS1 and N1. And two isolates were used to construct a composite PGPR named MC1. These three strains of PGPR were used for soil inoculation in the pot experiment and field trial and their capacity to promote rice development was assessed. The results showed that MC1 inoculation exhibited notable rice growth-promoting ability in pot experiments, and, respectively, had an increment of 16.96, 18.74, and 11.50% in shoot biomass, total biomass, and rice height compared with control. This is largely attributed to PGPR's capacity to secrete phytohormones and soil enzymes, particularly urease (UE) in GS1, whose secreted UE content was significantly higher by 12.18% compared to the control. When applied to the field, MC1 inoculation not only increased rice yield by 8.52% and the available nutrient content in rice rhizosphere soil, such as available phosphorus (AP) and exchangeable magnesium (EMg); but also improved the abundance of beneficial rhizobacteria and the diversity of microbial communities in rice rhizosphere soil. Results in this study revealed that inoculated PGPR played a major role in promoting rice growth and development, and a new strategy for facilitating the growth of rice crops in agriculture was elucidated.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions
    Chompa, Sayma Serine
    Zuan, Ali Tan Kee
    Amin, Adibah Mohd
    Hun, Tan Geok
    Ghazali, Amir Hamzah Ahmad
    Sadeq, Buraq Musa
    Akter, Amaily
    Rahman, Md Ekhlasur
    Rashid, Harun Or
    INTERNATIONAL MICROBIOLOGY, 2024, 27 (04) : 1151 - 1168
  • [42] Plant growth-promoting rhizobacteria used in South Korea
    Ibal, Jerald Conrad
    Jung, Byung Kwon
    Park, Chang Eon
    Shin, Jae-Ho
    APPLIED BIOLOGICAL CHEMISTRY, 2018, 61 (06) : 709 - 716
  • [43] Applications of free living plant growth-promoting rhizobacteria
    M. Lucy
    E. Reed
    Bernard R. Glick
    Antonie van Leeuwenhoek, 2004, 86 : 1 - 25
  • [44] Endophytic colonization of spruce by plant growth-promoting rhizobacteria
    Shishido, M
    Breuil, C
    Chanway, CP
    FEMS MICROBIOLOGY ECOLOGY, 1999, 29 (02) : 191 - 196
  • [45] Plant growth-promoting rhizobacteria and root system functioning
    Vacheron, Jordan
    Desbrosses, Guilhem
    Bouffaud, Marie-Lara
    Touraine, Bruno
    Moenne-Loccoz, Yvan
    Muller, Daniel
    Legendre, Laurent
    Wisniewski-Dye, Florence
    Prigent-Combaret, Claire
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [46] Plant growth-promoting rhizobacteria used in South Korea
    Jerald Conrad Ibal
    Byung Kwon Jung
    Chang Eon Park
    Jae-Ho Shin
    Applied Biological Chemistry, 2018, 61 : 709 - 716
  • [47] Biocontrol of tomato wilt by plant growth-promoting rhizobacteria
    Guo, JH
    Qi, HY
    Guo, YH
    Ge, HL
    Gong, LY
    Zhang, LX
    Sun, PH
    BIOLOGICAL CONTROL, 2004, 29 (01) : 66 - 72
  • [48] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    P. N. Bhattacharyya
    D. K. Jha
    World Journal of Microbiology and Biotechnology, 2012, 28 : 1327 - 1350
  • [49] Evaluation of plant growth-promoting rhizobacteria on stockpiled bermudagrass
    Griffin, Megan E.
    Muntifering, Russell B.
    Mullenix, Mary K.
    Held, David W.
    Dillard, Sandra L.
    CROP FORAGE & TURFGRASS MANAGEMENT, 2020, 6 (01)
  • [50] New advances in plant growth-promoting rhizobacteria for bioremediation
    Zhuang, Xuliang
    Chen, Jian
    Shim, Hojae
    Bai, Zhihui
    ENVIRONMENT INTERNATIONAL, 2007, 33 (03) : 406 - 413