Finite groups satisfying the independence property

被引:1
|
作者
Freedman, Saul D. [1 ]
Lucchini, Andrea [2 ]
Nemmi, Daniele [2 ]
Roney-Dougal, Colva M. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
[2] Univ Padua, Dipartimento Matemat, Tullio Levi-C Via Trieste 63, I-35121 Padua, Italy
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Generating sets; supersoluble groups; simple groups; POWER GRAPH; GENERATING SETS; PROBABILISTIC GENERATION; ELEMENTS; SUBGROUP; NUMBER;
D O I
10.1142/S021819672350025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a finite group G satisfies the independence property if, for every pair of distinct elements x and y of G, either {x, y} is contained in a minimal generating set for G or one of x and y is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups H contain an element s such that the maximal subgroups of H containing s, but not containing the socle of H, are pairwise non-conjugate.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条
  • [41] Limit points in the range of the commuting probability function on finite groups
    Hegarty, Peter
    JOURNAL OF GROUP THEORY, 2013, 16 (02) : 235 - 247
  • [42] Finite simple groups with short Galois orbits on conjugacy classes
    Bovdi, Victor
    Breuer, Thomas
    Maroti, Attila
    JOURNAL OF ALGEBRA, 2020, 544 : 151 - 169
  • [43] Relative non nil-n graphs of finite groups
    Erfanian, Ahmad
    Tolue, Behnaz
    SCIENCEASIA, 2012, 38 (02): : 201 - 206
  • [44] On finite groups whose power graph is claw-free
    Manna, Pallabi
    Mandal, Santanu
    Lucchini, Andrea
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [45] Counting homomorphisms from surface groups to finite groups
    Klug, Michael R.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 141 - 153
  • [46] Interval groups related to finite Coxeter groups I
    Baumeister, Barbara
    Neaime, Georges
    Rees, Sarah
    ALGEBRAIC COMBINATORICS, 2023, 6 (02): : 471 - 506
  • [47] Maximal covers of finite groups
    Bastos, Raimundo
    Lima, Igor
    Rogerio, Jose R.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 691 - 701
  • [48] Permutability Degrees of Finite Groups
    Otera, D. E.
    Russo, F. G.
    FILOMAT, 2016, 30 (08) : 2165 - 2175
  • [49] ON FINITE SIMPLY REDUCIBLE GROUPS
    Kazarin, L. S.
    Yanishevskii, V. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (06) : 931 - 951
  • [50] Normality degrees of finite groups
    Tarnauceanu, Marius
    CARPATHIAN JOURNAL OF MATHEMATICS, 2017, 33 (01) : 115 - 126