Finite groups satisfying the independence property

被引:1
|
作者
Freedman, Saul D. [1 ]
Lucchini, Andrea [2 ]
Nemmi, Daniele [2 ]
Roney-Dougal, Colva M. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
[2] Univ Padua, Dipartimento Matemat, Tullio Levi-C Via Trieste 63, I-35121 Padua, Italy
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Generating sets; supersoluble groups; simple groups; POWER GRAPH; GENERATING SETS; PROBABILISTIC GENERATION; ELEMENTS; SUBGROUP; NUMBER;
D O I
10.1142/S021819672350025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a finite group G satisfies the independence property if, for every pair of distinct elements x and y of G, either {x, y} is contained in a minimal generating set for G or one of x and y is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups H contain an element s such that the maximal subgroups of H containing s, but not containing the socle of H, are pairwise non-conjugate.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条
  • [21] Constructing Small Generating Sets for the Multiplicative Groups of Algebras over Finite Fields
    Huang, Ming-Deh
    Liu, Lian
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 287 - 294
  • [22] The Divisibility Graph of finite groups of Lie type
    Abdolghafourian, Adeleh
    Iranmanesh, Mohammad A.
    Niemeyer, Alice C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2482 - 2493
  • [23] A Note on the Power Graphs of Finite Nilpotent Groups
    Jain, Vivek Kumar
    Kumar, Pradeep
    FILOMAT, 2020, 34 (07) : 2451 - 2461
  • [24] On finite groups whose power graph is a cograph
    Cameron, Peter J.
    Manna, Pallabi
    Mehatari, Ranjit
    JOURNAL OF ALGEBRA, 2022, 591 : 59 - 74
  • [25] On groups with chordal power graph, including a classification in the case of finite simple groups
    Brachter, Jendrik
    Kaja, Eda
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (04) : 1095 - 1124
  • [26] On groups with chordal power graph, including a classification in the case of finite simple groups
    Jendrik Brachter
    Eda Kaja
    Journal of Algebraic Combinatorics, 2023, 58 : 1095 - 1124
  • [27] Finite groups have more conjugacy classes
    Baumeister, Barbara
    Maroti, Attila
    Tong-Viet, Hung P.
    FORUM MATHEMATICUM, 2017, 29 (02) : 259 - 275
  • [28] On the Connectivity and Independence Number of Power Graphs of Groups
    Peter J. Cameron
    Sayyed Heidar Jafari
    Graphs and Combinatorics, 2020, 36 : 895 - 904
  • [29] On the Connectivity and Independence Number of Power Graphs of Groups
    Cameron, Peter J.
    Jafari, Sayyed Heidar
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 895 - 904
  • [30] On the independence number of the power graph of a finite group
    Ma, Xuanlong
    Fu, Ruiqin
    Lu, Xuefei
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02): : 794 - 806