Finite groups satisfying the independence property

被引:1
|
作者
Freedman, Saul D. [1 ]
Lucchini, Andrea [2 ]
Nemmi, Daniele [2 ]
Roney-Dougal, Colva M. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
[2] Univ Padua, Dipartimento Matemat, Tullio Levi-C Via Trieste 63, I-35121 Padua, Italy
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Generating sets; supersoluble groups; simple groups; POWER GRAPH; GENERATING SETS; PROBABILISTIC GENERATION; ELEMENTS; SUBGROUP; NUMBER;
D O I
10.1142/S021819672350025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a finite group G satisfies the independence property if, for every pair of distinct elements x and y of G, either {x, y} is contained in a minimal generating set for G or one of x and y is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups H contain an element s such that the maximal subgroups of H containing s, but not containing the socle of H, are pairwise non-conjugate.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条
  • [1] On finite groups with some primary subgroups satisfying partial S-Π-property
    Chen, Xiaoyu
    Mao, Yuemei
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (01) : 428 - 436
  • [2] Classification of finite groups satisfying a minimal condition
    Shirong Li
    Wei Meng
    Siberian Mathematical Journal, 2009, 50 : 100 - 106
  • [3] Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p
    Flemisch, Felix F.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2022, 13 : 13 - 39
  • [4] On One Property of Normal Hall Subgroups of Finite Groups
    X. Yi
    B. Cheng
    R. V. Borodich
    S. F. Kamornikov
    Siberian Mathematical Journal, 2025, 66 (2) : 291 - 297
  • [5] The independence graph of a finite group
    Lucchini, Andrea
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 845 - 856
  • [6] The independence graph of a finite group
    Andrea Lucchini
    Monatshefte für Mathematik, 2020, 193 : 845 - 856
  • [7] The commuting conjugacy class graphs of finite groups with a given property
    Rezaei, Mehdi
    Foruzanfar, Zeinab
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 121 - 127
  • [8] Groups with the basis property
    McDougall-Bagnall, Jonathan
    Quick, Martyn
    JOURNAL OF ALGEBRA, 2011, 346 (01) : 332 - 339
  • [9] Groups satisfying identities with high probability
    Mann, Avinoam
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (08) : 1575 - 1584
  • [10] New family of Abelian integrals satisfying Chebyshev property
    Cen, Xiuli
    Liu, Changjian
    Zhao, Yulin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) : 7561 - 7581