Nonlinear Deblurring for Low-Light Saturated Image

被引:0
|
作者
Cao, Shuning [1 ,2 ]
Chang, Yi [1 ]
Xu, Shengqi [1 ]
Fang, Houzhang [3 ]
Yan, Luxin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automation, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] Peng Cheng Lab, Artificial Intelligence Ctr, Shenzhen 518055, Peoples R China
[3] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear model; low-light saturated images; ringing artifact; image deblurring; VARIATION BLIND DECONVOLUTION;
D O I
10.3390/s23083784
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Single image deblurring has achieved significant progress for natural daytime images. Saturation is a common phenomenon in blurry images, due to the low light conditions and long exposure times. However, conventional linear deblurring methods usually deal with natural blurry images well but result in severe ringing artifacts when recovering low-light saturated blurry images. To solve this problem, we formulate the saturation deblurring problem as a nonlinear model, in which all the saturated and unsaturated pixels are modeled adaptively. Specifically, we additionally introduce a nonlinear function to the convolution operator to accommodate the procedure of the saturation in the presence of the blurring. The proposed method has two advantages over previous methods. On the one hand, the proposed method achieves the same high quality of restoring the natural image as seen in conventional deblurring methods, while also reducing the estimation errors in saturated areas and suppressing ringing artifacts. On the other hand, compared with the recent saturated-based deblurring methods, the proposed method captures the formation of unsaturated and saturated degradations straightforwardly rather than with cumbersome and error-prone detection steps. Note that, this nonlinear degradation model can be naturally formulated into a maximum-a posterioriframework, and can be efficiently decoupled into several solvable sub-problems via the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real-world images demonstrate that the proposed deblurring algorithm outperforms the state-of-the-art low-light saturation-based deblurring methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311
  • [42] Low-light image enhancement based on normal-light image degradation
    Bai Zhao
    Xiaolin Gong
    Jian Wang
    Lingchao Zhao
    Signal, Image and Video Processing, 2022, 16 : 1409 - 1416
  • [43] SurroundNet: Towards effective low-light image enhancement
    Zhou, Fei
    Sun, Xin
    Dong, Junyu
    Zhu, Xiao Xiang
    PATTERN RECOGNITION, 2023, 141
  • [44] Rain Streaks Removal in Single Low-light Image
    Liu, Tong
    Wu, Zehao
    Li, Haowei
    Fu, Wenqi
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6228 - 6233
  • [45] Invertible network for unpaired low-light image enhancement
    Jize Zhang
    Haolin Wang
    Xiaohe Wu
    Wangmeng Zuo
    The Visual Computer, 2024, 40 : 109 - 120
  • [46] Low-light image enhancement with geometrical sparse representation
    Jin Tan
    Taiping Zhang
    Linchang Zhao
    Darong Huang
    Zhenyuan Zhang
    Applied Intelligence, 2023, 53 : 11019 - 11033
  • [47] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (05) : 41 - 48
  • [48] Generative adversarial network for low-light image enhancement
    Li, Fei
    Zheng, Jiangbin
    Zhang, Yuan-fang
    IET IMAGE PROCESSING, 2021, 15 (07) : 1542 - 1552
  • [49] Image Enhancement for Remote Photoplethysmography in a Low-Light Environment
    Xi, Lin
    Chen, Weihai
    Zhao, Changchen
    Wu, Xingming
    Wang, Jianhua
    2020 15TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2020), 2020, : 1 - 7
  • [50] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434