Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions

被引:40
|
作者
Mohamed, Sayed A. [1 ]
Metwaly, Mohamed M. [1 ]
Metwalli, Mohamed R. [1 ]
AbdelRahman, Mohamed A. E. [2 ]
Badreldin, Nasem [3 ]
机构
[1] Natl Author Remote Sensing & Space Sci, Data Recept Anal & Receiving Stn Affairs Div, Cairo 11769, Egypt
[2] Natl Author Remote Sensing & Space Sci NARSS, Land Use Dept, Div Environm Studies & Land Use, Cairo 11769, Egypt
[3] Univ Manitoba, Fac Agr & Food Sci, Dept Soil Sci, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
关键词
machine learning; feature selection; soil salinity; arid regions; ORGANIC-CARBON; SENTINEL-2; MSI; ALGORITHMS; REGRESSION; MOISTURE; LANDS; MODEL; AREA;
D O I
10.3390/rs15071751
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The prevention of soil salinization and managing agricultural irrigation depend greatly on accurately estimating soil salinity. Although the long-standing laboratory method of measuring salinity composition is accurate for determining soil salinity parameters, its use is frequently constrained by the high expense and difficulty of long-term in situ measurement. Soil salinity in the northern Nile Delta of Egypt severely affects agriculture sustainability and food security in Egypt. Understanding the spatial distribution of soil salinity is a critical factor for agricultural development and management in drylands. This research aims to improve soil salinity prediction by using a combined data collection method consisting of Sentinel-1 C radar data and Sentinel-2 optical data acquired simultaneously via integrated radar and optical sensor variables. The modelling approach focuses on feature selection strategies and regression learning. Feature selection approaches that include the filter, wrapper, and embedded methods were used with 47 selected variables depending on a genetic algorithm to scrutinize whether regions of the spectrum from optical indices and SAR texture choose the optimum combinations of selected variables. The sub-setting variables resulting from each feature selection method were used to train the regression learners' random forest (RF), linear regression (LR), backpropagation neural network (BPNN), and support vector regression (SVR). Combining the BPNN feature selection method with the RF regression learner better predicted soil salinity (RME 0.000246; sub-setting variables = 18). Integrating different remote sensing data and machine learning provides an opportunity to develop a robust prediction approach to predict soil salinity in drylands. This research evaluated the performances of various machine learning models, overcame the limitations of conventional techniques, and optimized the variable input combinations. This research can assist farmers in soil-salinization-affected areas in better managing planting procedures and enhancing the sustainability of their lands.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China
    Wang, Nan
    Xue, Jie
    Peng, Jie
    Biswas, Asim
    He, Yong
    Shi, Zhou
    REMOTE SENSING, 2020, 12 (24) : 1 - 21
  • [2] Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas
    Kaplan, Gordana
    Gasparovic, Mateo
    Alqasemi, Abduldaem S.
    Aldhaheri, Alya
    Abuelgasim, Abdelgadir
    Ibrahim, Majed
    PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 130
  • [3] Enhancing soil moisture retrieval in semi-arid regions using machine learning algorithms and remote sensing data
    Duan, Xulong
    Maqsoom, Ahsen
    Khalil, Umer
    Aslam, Bilal
    Amjad, Talal
    Tufail, Rana Faisal
    Alarifi, Saad S.
    Tariq, Aqil
    APPLIED SOIL ECOLOGY, 2024, 204
  • [4] Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan
    ul Haq, Yasin
    Shahbaz, Muhammad
    Asif, H. M. Shahzad
    Al-Laith, Ali
    Alsabban, Wesam H.
    SUSTAINABILITY, 2023, 15 (17)
  • [5] Actual Evapotranspiration Estimates in Arid Cold Regions Using Machine Learning Algorithms with In Situ and Remote Sensing Data
    Mosre, Josefina
    Suarez, Francisco
    WATER, 2021, 13 (06)
  • [6] Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China
    Wang, Jiaqiang
    Peng, Jie
    Li, Hongyi
    Yin, Caiyun
    Liu, Weiyang
    Wang, Tianwei
    Zhang, Huaping
    REMOTE SENSING, 2021, 13 (02) : 1 - 14
  • [7] A Global Meta-Analysis of Soil Salinity Prediction Integrating Satellite Remote Sensing, Soil Sampling, and Machine Learning
    Shi, Haiyang
    Hellwich, Olaf
    Luo, Geping
    Chen, Chunbo
    He, Huili
    Ochege, Friday Uchenna
    Van de Voorde, Tim
    Kurban, Alishir
    de Maeyer, Philippe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: A case study in Vietnam's Mekong Delta
    Nguyen, Tien Giang
    Tran, Ngoc Anh
    Vu, Phuong Lan
    Nguyen, Quoc-Huy
    Nguyen, Huu Duy
    Bui, Quang-Thanh
    GEODERMA REGIONAL, 2021, 27
  • [9] Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data
    Abuelgasim, Abdelgadir
    Ammad, Rubab
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2019, 13 : 415 - 425
  • [10] Spatial prediction of soil salinity: Remote sensing and machine learning approach
    Thangarasu, Thenmozhi
    Mengash, Hanan Abdullah
    Allafi, Randa
    Mahgoub, Hany
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2025, 156