Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions

被引:39
|
作者
Mohamed, Sayed A. [1 ]
Metwaly, Mohamed M. [1 ]
Metwalli, Mohamed R. [1 ]
AbdelRahman, Mohamed A. E. [2 ]
Badreldin, Nasem [3 ]
机构
[1] Natl Author Remote Sensing & Space Sci, Data Recept Anal & Receiving Stn Affairs Div, Cairo 11769, Egypt
[2] Natl Author Remote Sensing & Space Sci NARSS, Land Use Dept, Div Environm Studies & Land Use, Cairo 11769, Egypt
[3] Univ Manitoba, Fac Agr & Food Sci, Dept Soil Sci, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
关键词
machine learning; feature selection; soil salinity; arid regions; ORGANIC-CARBON; SENTINEL-2; MSI; ALGORITHMS; REGRESSION; MOISTURE; LANDS; MODEL; AREA;
D O I
10.3390/rs15071751
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The prevention of soil salinization and managing agricultural irrigation depend greatly on accurately estimating soil salinity. Although the long-standing laboratory method of measuring salinity composition is accurate for determining soil salinity parameters, its use is frequently constrained by the high expense and difficulty of long-term in situ measurement. Soil salinity in the northern Nile Delta of Egypt severely affects agriculture sustainability and food security in Egypt. Understanding the spatial distribution of soil salinity is a critical factor for agricultural development and management in drylands. This research aims to improve soil salinity prediction by using a combined data collection method consisting of Sentinel-1 C radar data and Sentinel-2 optical data acquired simultaneously via integrated radar and optical sensor variables. The modelling approach focuses on feature selection strategies and regression learning. Feature selection approaches that include the filter, wrapper, and embedded methods were used with 47 selected variables depending on a genetic algorithm to scrutinize whether regions of the spectrum from optical indices and SAR texture choose the optimum combinations of selected variables. The sub-setting variables resulting from each feature selection method were used to train the regression learners' random forest (RF), linear regression (LR), backpropagation neural network (BPNN), and support vector regression (SVR). Combining the BPNN feature selection method with the RF regression learner better predicted soil salinity (RME 0.000246; sub-setting variables = 18). Integrating different remote sensing data and machine learning provides an opportunity to develop a robust prediction approach to predict soil salinity in drylands. This research evaluated the performances of various machine learning models, overcame the limitations of conventional techniques, and optimized the variable input combinations. This research can assist farmers in soil-salinization-affected areas in better managing planting procedures and enhancing the sustainability of their lands.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Enhancing soil moisture retrieval in semi-arid regions using machine learning algorithms and remote sensing data
    Duan, Xulong
    Maqsoom, Ahsen
    Khalil, Umer
    Aslam, Bilal
    Amjad, Talal
    Tufail, Rana Faisal
    Alarifi, Saad S.
    Tariq, Aqil
    APPLIED SOIL ECOLOGY, 2024, 204
  • [2] Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan
    ul Haq, Yasin
    Shahbaz, Muhammad
    Asif, H. M. Shahzad
    Al-Laith, Ali
    Alsabban, Wesam H.
    SUSTAINABILITY, 2023, 15 (17)
  • [3] Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas
    Kaplan, Gordana
    Gasparovic, Mateo
    Alqasemi, Abduldaem S.
    Aldhaheri, Alya
    Abuelgasim, Abdelgadir
    Ibrahim, Majed
    PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 130
  • [4] Digital soil mapping for soil types using machine learning approaches at the landscape scale in the arid regions of Iran
    Manteghi, Shaho
    Moravej, Kamran
    Mousavi, Seyed Roohollah
    Delavar, Mohammad Amir
    Mastinu, Andrea
    ADVANCES IN SPACE RESEARCH, 2024, 74 (01) : 1 - 16
  • [5] Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh
    Showmitra Kumar Sarkar
    Rhyme Rubayet Rudra
    Abid Reza Sohan
    Palash Chandra Das
    Khondaker Mohammed Mohiuddin Ekram
    Swapan Talukdar
    Atiqur Rahman
    Edris Alam
    Md Kamrul Islam
    Abu Reza Md. Towfiqul Islam
    Scientific Reports, 13 (1)
  • [6] Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh
    Sarkar, Showmitra Kumar
    Rudra, Rhyme Rubayet
    Sohan, Abid Reza
    Das, Palash Chandra
    Ekram, Khondaker Mohammed Mohiuddin
    Talukdar, Swapan
    Rahman, Atiqur
    Alam, Edris
    Islam, Md Kamrul
    Islam, Abu Reza Md. Towfiqul
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Using remote sensing data for geological mapping in semi-arid environment: a machine learning approach
    El Alaoui El Fels, Abdelhafid
    El Ghorfi, Mustapha
    EARTH SCIENCE INFORMATICS, 2022, 15 (01) : 485 - 496
  • [8] Using remote sensing data for geological mapping in semi-arid environment: a machine learning approach
    Abdelhafid El Alaoui El Fels
    Mustapha El Ghorfi
    Earth Science Informatics, 2022, 15 : 485 - 496
  • [9] Soil salinity mapping using remote sensing and GIS
    Gad, Mahmoud Mohamed El-Sayed
    Mohamed, Mostafa H.A.
    Mohamed, Mervat Refaat
    Geomatica, 2022, 75 (04) : 295 - 309
  • [10] Detection and modeling of soil salinity variations in arid lands using remote sensing data
    Alqasemi, Abduldaem S.
    Ibrahim, Majed
    Al-Quraishi, Ayad M. Fadhil
    Saibi, Hakim
    Al-Fugara, A'kif
    Kaplan, Gordana
    OPEN GEOSCIENCES, 2021, 13 (01) : 443 - 453