The prevention of soil salinization and managing agricultural irrigation depend greatly on accurately estimating soil salinity. Although the long-standing laboratory method of measuring salinity composition is accurate for determining soil salinity parameters, its use is frequently constrained by the high expense and difficulty of long-term in situ measurement. Soil salinity in the northern Nile Delta of Egypt severely affects agriculture sustainability and food security in Egypt. Understanding the spatial distribution of soil salinity is a critical factor for agricultural development and management in drylands. This research aims to improve soil salinity prediction by using a combined data collection method consisting of Sentinel-1 C radar data and Sentinel-2 optical data acquired simultaneously via integrated radar and optical sensor variables. The modelling approach focuses on feature selection strategies and regression learning. Feature selection approaches that include the filter, wrapper, and embedded methods were used with 47 selected variables depending on a genetic algorithm to scrutinize whether regions of the spectrum from optical indices and SAR texture choose the optimum combinations of selected variables. The sub-setting variables resulting from each feature selection method were used to train the regression learners' random forest (RF), linear regression (LR), backpropagation neural network (BPNN), and support vector regression (SVR). Combining the BPNN feature selection method with the RF regression learner better predicted soil salinity (RME 0.000246; sub-setting variables = 18). Integrating different remote sensing data and machine learning provides an opportunity to develop a robust prediction approach to predict soil salinity in drylands. This research evaluated the performances of various machine learning models, overcame the limitations of conventional techniques, and optimized the variable input combinations. This research can assist farmers in soil-salinization-affected areas in better managing planting procedures and enhancing the sustainability of their lands.
机构:
Eskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, TurkiyeEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
Kaplan, Gordana
Gasparovic, Mateo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zagreb, Fac Geodesy, Chair Photogrammetry & Remote Sensing, Zagreb, CroatiaEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
Gasparovic, Mateo
Alqasemi, Abduldaem S.
论文数: 0引用数: 0
h-index: 0
机构:
Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab EmiratesEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
Alqasemi, Abduldaem S.
Aldhaheri, Alya
论文数: 0引用数: 0
h-index: 0
机构:
Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab EmiratesEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
Aldhaheri, Alya
Abuelgasim, Abdelgadir
论文数: 0引用数: 0
h-index: 0
机构:
Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab EmiratesEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
Abuelgasim, Abdelgadir
Ibrahim, Majed
论文数: 0引用数: 0
h-index: 0
机构:
Al Al Bayt Univ, Erath & Environm Sci Inst, Geog Informat Syst & Remote Sensing Dept, Al Mafraq, JordanEskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
机构:
Yunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R ChinaYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Duan, Xulong
Maqsoom, Ahsen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mohammed VI Polytech, Green Tech Inst, Ben Guerir, MoroccoYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Maqsoom, Ahsen
Khalil, Umer
论文数: 0引用数: 0
h-index: 0
机构:
Univ Twente, ITC Fac Geoinformat Sci & Earth Observat, NL-7522 NB Enschede, NetherlandsYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Khalil, Umer
Aslam, Bilal
论文数: 0引用数: 0
h-index: 0
机构:
No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USAYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Aslam, Bilal
Amjad, Talal
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad Wah Campus, Dept Civil Engn, Rawalpindi, PakistanYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Amjad, Talal
Tufail, Rana Faisal
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad Wah Campus, Dept Civil Engn, Rawalpindi, PakistanYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Tufail, Rana Faisal
Alarifi, Saad S.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Coll Sci, Dept Geol & Geophys, POB 2455, Riyadh 11451, Saudi ArabiaYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
Alarifi, Saad S.
Tariq, Aqil
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Wildlife Fisheries & Aquaculture, Mississippi, MS 39762 USAYunnan Open Univ, Sch Urban Construct, Kunming 650500, Yunnan, Peoples R China
机构:
United Arab Emirates Univ, Coll Humanities & Social Sci, Natl Space Sci & Technol Ctr, Dept Geog & Urban Planning, Abu Dhabi 15551, U Arab EmiratesUnited Arab Emirates Univ, Coll Humanities & Social Sci, Natl Space Sci & Technol Ctr, Dept Geog & Urban Planning, Abu Dhabi 15551, U Arab Emirates
Abuelgasim, Abdelgadir
Ammad, Rubab
论文数: 0引用数: 0
h-index: 0
机构:
United Arab Emirates Univ, Coll Sci, Dept Biol, Abu Dhabi 15551, U Arab EmiratesUnited Arab Emirates Univ, Coll Humanities & Social Sci, Natl Space Sci & Technol Ctr, Dept Geog & Urban Planning, Abu Dhabi 15551, U Arab Emirates