Li-Ion Transfer Mechanism of Ambient-Temperature Solid Polymer Electrolyte toward Lithium Metal Battery

被引:91
作者
Wang, Su [1 ]
Sun, Qifang [1 ]
Zhang, Qing [1 ]
Li, Chen [1 ]
Xu, Chaoran [1 ]
Ma, Yue [1 ]
Shi, Xixi [1 ]
Zhang, Hongzhou [1 ]
Song, Dawei [1 ]
Zhang, Lianqi [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin, Peoples R China
关键词
dual-layer structures; Li-ion conduction mechanism; room temperature operation; solid polymer electrolytes; CONDUCTIVITY; INTERFACE; OXIDE); ANODES;
D O I
10.1002/aenm.202204036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low ionic conductivity and short service life of solid polymer electrolytes (SPEs) limit the application of ambient-temperature polymer lithium metal batteries, which is perhaps a result of the inherent restricted segment movement of the polymer at room temperature. Herein, an ambient-temperature dual-layer solid polymer electrolyte is developed and the related working mechanisms are innovatively investigated. In the strategy, poly(propylene carbonate) (PPC)/succinonitrile (SN) contacts with the cathode while polyethylene oxide (PEO)/Li7La3Zr2O12 is adopted near the anode. Molecular dynamics simulations demonstrate the formation of solvated sheath-like structure [SN center dot center dot center dot Li+], which demonstrates strong interaction with polymers (PPC center dot center dot center dot[SN center dot center dot center dot Li+]/PEO center dot center dot center dot[SN center dot center dot center dot Li+]). Further density functional theory calculations show that these structures, allow rapid transport of Li ions through polymer segments. These results are confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Therefore, the Li-ion transport mechanism for ambient-temperature SPEs can be reasonably revealed. Remarkably, the binding energy between PPC and SN is stronger than that of PEO, which helps avoid the parasitic reaction between SN and Li. A low overpotential of 55 mV is exhibited for Li/Li symmetrical cells after 1000 h. Notably, a capacity retention of 86.3% is maintained for LiNi0.6Co0.2Mn0.2O2/Li cell at 25 degrees C, implying good application potential in ambient-temperature high voltage lithium metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Lithium Phosphorus Sulfide Chloride-Polymer Composite via the Solution-Precipitation Process for Improving Stability toward Dendrite Formation of Li-Ion Solid Electrolyte
    Khomein, Piyachai
    Byeon, Young-Woon
    Liu, Dongye
    Yu, Jin
    Minor, Andrew M.
    Kim, Haegyeom
    Liu, Gao
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (09) : 11723 - 11730
  • [32] A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery
    Zhao, Zhongke
    Zhang, Yingmeng
    Li, Shaojun
    Wang, Suhang
    Li, Yongliang
    Mi, Hongwei
    Sun, Lingna
    Ren, Xiangzhong
    Zhang, Peixin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (45) : 25818 - 25823
  • [33] Unprecedented Improvement of Single Li-Ion Conductive Solid Polymer Electrolyte Through Salt Additive
    Martinez-Ibanez, Maria
    Sanchez-Diez, Eduardo
    Qiao, Lixin
    Zhang, Yan
    Judez, Xabier
    Santiago, Alexander
    Aldalur, Itziar
    Carrasco, Javier
    Zhu, Haijin
    Forsyth, Maria
    Armand, Michel
    Zhang, Heng
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
  • [34] High capacity MgH2 composite electrodes for all-solid-state Li-ion battery operating at ambient temperature
    Cano-Banda, Fernando
    Gallardo-Gutierrez, Ana
    Luviano-Ortiz, Luis
    Hernandez-Guerrero, Abel
    Jain, Ankur
    Ichikawa, Takayuki
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (01) : 1030 - 1037
  • [35] Temperature Dependent Dielectric Properties and Ion Transportation in Solid Polymer Electrolyte for Lithium Ion Batteries
    Sengwa, R. J.
    Dhatarwal, Priyanka
    Choudhary, Shobhna
    [J]. INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [36] Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte
    Wakihara, M.
    Kadoma, Y.
    Kumagai, N.
    Mita, H.
    Araki, R.
    Ozawa, K.
    Ozawa, Y.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (03) : 847 - 855
  • [37] Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion battery applications
    Sabrina, Qolby
    Ratri, Christin Rina
    Hardiansyah, Andri
    Lestariningsih, Titik
    Subhan, Achmad
    Rifai, Abdulloh
    Yudianti, Rike
    Uyama, Hiroshi
    [J]. RSC ADVANCES, 2021, 11 (37) : 22929 - 22936
  • [38] Atomic Defect Mediated Li-Ion Diffusion in a Lithium Lanthanum Titanate Solid-State Electrolyte
    Zhang, Lifeng
    Xu, Lei
    Nian, Yao
    Wang, Weizhen
    Han, You
    Luo, Langli
    [J]. ACS NANO, 2022, 16 (04) : 6898 - 6905
  • [39] Dimethyl sulfite as an additive for lithium bis(oxalate)borate/γ-Butyrolacton electrolyte to improve the performance of Li-ion battery
    Ping, Ping
    Wang, Qingsong
    Kong, Depeng
    Zhang, Chengping
    Sun, Jinhua
    Chen, Chunhua
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 731 : 119 - 127
  • [40] Design and characterization of an adaptive polymer electrolyte for lithium metal solid-state battery applications
    Newman, Matthew
    Liu, Jian
    Jang, Hoyeon
    Ghosh, Rinky
    Dey, Sriloy
    Cho, Hanna
    Vodovotz, Yael
    Sayre, Jay
    Canova, Marcello
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (11) : 7914 - 7928