Efficient generation of tunable magnetic and optical vortices using plasmas

被引:5
作者
Wu, Yipeng [1 ]
Xu, Xinlu [2 ]
Zhang, Chaojie [1 ]
Nie, Zan [1 ]
Sinclair, Mitchell [1 ]
Farrell, Audrey [1 ]
Marsh, Kenneth A. [1 ]
Hua, Jianfei [3 ]
Lu, Wei [3 ]
Mori, Warren B. [1 ,4 ]
Joshi, Chan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
RELATIVISTIC IONIZATION FRONT; ELECTROMAGNETIC-RADIATION; MICROWAVE GENERATION; LIGHT; PULSE; FIELD; ULTRASHORT; CONVERSION; DC;
D O I
10.1103/PhysRevResearch.5.L012011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Plasma is an attractive medium for generating strong microscopic magnetic structures and tunable electromagnetic radiation with predictable topologies due to its extraordinary ability to sustain and manipulate high currents and strong fields. Here, using theory and simulations, we show efficient generation of multimegagauss magnetic and tunable optical vortices when a sharp relativistic ionization front (IF) passes through a relatively long wavelength Laguerre-Gaussian (LG) laser pulse with orbital angular momentum (OAM). The optical vortex is frequency upshifted within a wide spectral range simply by changing the plasma density and is compressed in duration. The topological charges of both vortices can be manipulated by controlling the OAM mode of the incident LG laser and/or by controlling the topology and density of the IF. For relatively high (low) plasma densities, most of the energy of the incident LG laser pulse is converted into the magnetic (optical) vortex, with conversion efficiency approaching similar to 90% for an ideal IF.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Advances in communications using optical vortices
    Wang, Jian
    PHOTONICS RESEARCH, 2016, 4 (05) : B14 - B28
  • [32] Topological Faraday Effect for Optical Vortices in Magnetic Films
    Yavorsky, M. A.
    Kozhaev, M. A.
    Fedorov, A. Yu.
    V. Vikulin, D.
    V. Barshak, E.
    Berzhansky, V. N.
    Lyashko, S. D.
    Kapralov, P. O.
    Belotelov, V. I.
    PHYSICAL REVIEW LETTERS, 2023, 130 (16)
  • [33] Generation of few μm high optical vortex using tunable spiral plates
    Awasthi, Saurabh
    Kang, SeungYeon
    JOURNAL OF PHYSICS-PHOTONICS, 2022, 4 (03):
  • [34] Generation of optical vortices with the same topological charges and controllable separation distances using diffraction gratings
    Ardakani, Abbas Ghasempour
    Safarzadeh, Fatemeh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [35] Numerical analysis of optical vortices generation with nanostructured phase masks
    Nguyen, Hue Thi
    Anuszkiewicz, Alicja
    Lisowska, Jolanta
    Filipkowski, Adam
    Kasztelanic, Rafal
    Buczynski, Ryszard
    Krolikowski, Wieslaw
    OPTICS EXPRESS, 2020, 28 (14) : 21143 - 21154
  • [36] Generation of optical vortices with controllable topological charges and polarization patterns
    Yang, Ching-Han
    Fuh, Andy Ying-Guey
    EMERGING LIQUID CRYSTAL TECHNOLOGIES XII, 2017, 10125
  • [37] Generation of Optical Skyrmions with Tunable Topological Textures
    Shen, Yijie
    Martinez, Eduardo Casas
    Rosales-Guzman, Carmelo
    ACS PHOTONICS, 2022, 9 (01) : 296 - 303
  • [38] Tunable Optical Vortices Generated by Self-Assembled Defect Structures in Nematics
    Salamon, Peter
    Eber, Nandor
    Sasaki, Yuji
    Orihara, Hiroshi
    Buka, Agnes
    Araoka, Fumito
    PHYSICAL REVIEW APPLIED, 2018, 10 (04):
  • [39] Beam propagation of efficient frequency-doubled optical vortices
    Yusufu, Taximaiti
    Sasaki, Yuta
    Araki, Shungo
    Miyamoto, Katsuhiko
    Omatsu, Takashige
    APPLIED OPTICS, 2016, 55 (19) : 5263 - 5266
  • [40] Manipulating optical vortices using integrated photonics
    Cai, Xinlun
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,