Efficient generation of tunable magnetic and optical vortices using plasmas

被引:5
作者
Wu, Yipeng [1 ]
Xu, Xinlu [2 ]
Zhang, Chaojie [1 ]
Nie, Zan [1 ]
Sinclair, Mitchell [1 ]
Farrell, Audrey [1 ]
Marsh, Kenneth A. [1 ]
Hua, Jianfei [3 ]
Lu, Wei [3 ]
Mori, Warren B. [1 ,4 ]
Joshi, Chan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
RELATIVISTIC IONIZATION FRONT; ELECTROMAGNETIC-RADIATION; MICROWAVE GENERATION; LIGHT; PULSE; FIELD; ULTRASHORT; CONVERSION; DC;
D O I
10.1103/PhysRevResearch.5.L012011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Plasma is an attractive medium for generating strong microscopic magnetic structures and tunable electromagnetic radiation with predictable topologies due to its extraordinary ability to sustain and manipulate high currents and strong fields. Here, using theory and simulations, we show efficient generation of multimegagauss magnetic and tunable optical vortices when a sharp relativistic ionization front (IF) passes through a relatively long wavelength Laguerre-Gaussian (LG) laser pulse with orbital angular momentum (OAM). The optical vortex is frequency upshifted within a wide spectral range simply by changing the plasma density and is compressed in duration. The topological charges of both vortices can be manipulated by controlling the OAM mode of the incident LG laser and/or by controlling the topology and density of the IF. For relatively high (low) plasma densities, most of the energy of the incident LG laser pulse is converted into the magnetic (optical) vortex, with conversion efficiency approaching similar to 90% for an ideal IF.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Narrowband reflective generation of higher-order optical vortices in Bragg spun optical fibers
    Alexeyev, Constantine N.
    APPLIED OPTICS, 2013, 52 (03) : 433 - 438
  • [22] Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers
    Alexeyev, C. N.
    Alexeyev, A. N.
    Lapin, B. P.
    Milione, G.
    Yavorsky, M. A.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [23] Generation of optical vortices by using spiral phase plates made of polarization dependent devices
    Xin, Jingtao
    Dai, Kunjian
    Zhong, Lei
    Na, Quanxin
    Gao, Chunqing
    OPTICS LETTERS, 2014, 39 (07) : 1984 - 1987
  • [24] Generation of spatiotemporal optical vortices in ultrashort laser pulses using rotationally interleaved multispirals
    Ma, Li
    Chen, Chao
    Zhan, Zijun
    Dong, Qingrui
    Cheng, Chuanfu
    Liu, Chunxiang
    OPTICS EXPRESS, 2022, 30 (26) : 47287 - 47303
  • [25] A review of multiple optical vortices generation: methods and applications
    Zhu, Long
    Wang, Jian
    FRONTIERS OF OPTOELECTRONICS, 2019, 12 (01) : 52 - 68
  • [26] Generation and interferometric analysis of high charge optical vortices
    Shen, Yong
    Campbell, Geoff T.
    Hage, Boris
    Zou, Hongxin
    Buchler, Benjamin C.
    Lam, Ping Koy
    JOURNAL OF OPTICS, 2013, 15 (04)
  • [27] Generation of Optical Vortices With Polarization-Insensitive Metasurfaces
    Shen, Z.
    Li, R.
    Xue, Y. Z.
    Qiu, Z. Y.
    Xiang, Z. Y.
    Zhou, J. Y.
    Zhang, B. F.
    IEEE PHOTONICS JOURNAL, 2020, 12 (04):
  • [28] Generation of radially polarized beams and higher order polarization singularities by optical parametric amplification of optical vortices
    Stanislovaitis, Paulius
    Ivanov, Maksym
    Matijosius, Aidas
    Smilgevicius, Valerijus
    Gertus, Titas
    OPTICAL ENGINEERING, 2017, 56 (09)
  • [29] Tunable high harmonic pulses from nanorings swirled by optical vortices
    Waeztzel, J.
    Berakdar, J.
    OPTICS EXPRESS, 2017, 25 (22): : 27857 - 27873
  • [30] Liquid Crystal Devices for the Reconfigurable Generation of Optical Vortices
    Albero, Jorge
    Garcia-Martinez, Pascuala
    Bennis, Noureddine
    Oton, Eva
    Cerrolaza, Beatriz
    Moreno, Ignacio
    Davis, Jeffrey A.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (18) : 3055 - 3060