Normalized ground states to the nonlinear Choquard equations with local perturbations

被引:1
作者
Shang, Xudong [1 ]
机构
[1] Nanjing Normal Univ, Taizhou Coll, Sch Math, Taizhou 225300, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 03期
关键词
Choquard equation; normalized solution; local perturbation; CONCENTRATION-COMPACTNESS PRINCIPLE; QUALITATIVE PROPERTIES; STANDING WAVES; EXISTENCE; CALCULUS;
D O I
10.3934/era.2024071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we considered the existence of ground state solutions to the following Choquard equation { -triangle u = lambda u + (I-alpha & lowast; F(u))f(u) + mu|u|(q-2)u in R-N, integral(N)(R)|u|(2)dx = a > 0, where N >= 3, I(alpha )is the Riesz potential of order alpha is an element of (0,N), 2 < q <= 2 + 4/N, mu > 0 and lambda is an element of R is a Lagrange multiplier. Under general assumptions on F is an element of C-1(R,R), for a L-2-subcritical and L-2-criticalof perturbation mu|u|(q-2)u, we established several existence or nonexistence results about the normalized ground state solutions.
引用
收藏
页码:1551 / 1573
页数:23
相关论文
共 50 条
[31]   The Ground State Solutions to Discrete Nonlinear Choquard Equations with Hardy Weights [J].
Wang, Lidan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)
[32]   NORMALIZED SOLUTIONS TO LOWER CRITICAL CHOQUARD EQUATION WITH A LOCAL PERTURBATION [J].
LI, Xinfu ;
Bao, Jianguang ;
Tang, Wenguang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05) :3216-3232
[33]   GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS [J].
Li, Xinfu ;
Ma, Shiwang .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (01) :153-170
[34]   HIGH PERTURBATIONS OF CHOQUARD EQUATIONS WITH CRITICAL REACTION AND VARIABLE GROWTH [J].
Zhang, Youpei ;
Tang, Xianhua ;
Radulescu, Vicentiu D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) :3819-3835
[35]   Local uniqueness of ground states for the generalized Choquard equation [J].
Georgiev, Vladimir ;
Tarulli, Mirko ;
Venkov, George .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
[36]   Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential [J].
Jing Zhang ;
Qiongfen Zhang .
Boundary Value Problems, 2021
[37]   Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential [J].
Zhang, Jing ;
Zhang, Qiongfen .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[38]   NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION [J].
Yao, Shuai ;
Chen, Haibo ;
Radulescu, Vicentiu D. ;
Sun, Juntao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) :3696-3723
[39]   Existence and asymptotic behavior of normalized solutions for Choquard equations with Kirchhoff perturbation [J].
Zhu, Shanni ;
Che, Guofeng ;
Chen, Haibo .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
[40]   Normalized ground states for fractional energy critical Kirchhoff equations with the mass critical and supercritical perturbations [J].
Kong, Lingzheng ;
Zhu, Liyan ;
Chen, Haibo .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (07)