Normalized ground states to the nonlinear Choquard equations with local perturbations

被引:0
作者
Shang, Xudong [1 ]
机构
[1] Nanjing Normal Univ, Taizhou Coll, Sch Math, Taizhou 225300, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 03期
关键词
Choquard equation; normalized solution; local perturbation; CONCENTRATION-COMPACTNESS PRINCIPLE; QUALITATIVE PROPERTIES; STANDING WAVES; EXISTENCE; CALCULUS;
D O I
10.3934/era.2024071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we considered the existence of ground state solutions to the following Choquard equation { -triangle u = lambda u + (I-alpha & lowast; F(u))f(u) + mu|u|(q-2)u in R-N, integral(N)(R)|u|(2)dx = a > 0, where N >= 3, I(alpha )is the Riesz potential of order alpha is an element of (0,N), 2 < q <= 2 + 4/N, mu > 0 and lambda is an element of R is a Lagrange multiplier. Under general assumptions on F is an element of C-1(R,R), for a L-2-subcritical and L-2-criticalof perturbation mu|u|(q-2)u, we established several existence or nonexistence results about the normalized ground state solutions.
引用
收藏
页码:1551 / 1573
页数:23
相关论文
共 50 条
  • [31] GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS
    Li, Xinfu
    Ma, Shiwang
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (01) : 153 - 170
  • [32] HIGH PERTURBATIONS OF CHOQUARD EQUATIONS WITH CRITICAL REACTION AND VARIABLE GROWTH
    Zhang, Youpei
    Tang, Xianhua
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3819 - 3835
  • [33] Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential
    Jing Zhang
    Qiongfen Zhang
    [J]. Boundary Value Problems, 2021
  • [34] Local uniqueness of ground states for the generalized Choquard equation
    Georgiev, Vladimir
    Tarulli, Mirko
    Venkov, George
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
  • [35] Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential
    Zhang, Jing
    Zhang, Qiongfen
    [J]. BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [36] NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION
    Yao, Shuai
    Chen, Haibo
    Radulescu, Vicentiu D.
    Sun, Juntao
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3696 - 3723
  • [37] Existence and asymptotic behavior of normalized solutions for Choquard equations with Kirchhoff perturbation
    Zhu, Shanni
    Che, Guofeng
    Chen, Haibo
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [38] Nonuniqueness of normalized ground states for nonlinear Schrödinger equations on metric graphs
    Dovetta, Simone
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2025, 130 (02)
  • [39] GROUND STATES OF NONLINEAR FRACTIONAL CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL GROWTH
    Jin, Hua
    Liu, Wenbin
    Zhang, Huixing
    Zhang, Jianjun
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 123 - 144
  • [40] Nonlinear Choquard equations involving a critical local term
    Seok, Jinmyoung
    [J]. APPLIED MATHEMATICS LETTERS, 2017, 63 : 77 - 87