Normalized ground states to the nonlinear Choquard equations with local perturbations

被引:1
作者
Shang, Xudong [1 ]
机构
[1] Nanjing Normal Univ, Taizhou Coll, Sch Math, Taizhou 225300, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 03期
关键词
Choquard equation; normalized solution; local perturbation; CONCENTRATION-COMPACTNESS PRINCIPLE; QUALITATIVE PROPERTIES; STANDING WAVES; EXISTENCE; CALCULUS;
D O I
10.3934/era.2024071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we considered the existence of ground state solutions to the following Choquard equation { -triangle u = lambda u + (I-alpha & lowast; F(u))f(u) + mu|u|(q-2)u in R-N, integral(N)(R)|u|(2)dx = a > 0, where N >= 3, I(alpha )is the Riesz potential of order alpha is an element of (0,N), 2 < q <= 2 + 4/N, mu > 0 and lambda is an element of R is a Lagrange multiplier. Under general assumptions on F is an element of C-1(R,R), for a L-2-subcritical and L-2-criticalof perturbation mu|u|(q-2)u, we established several existence or nonexistence results about the normalized ground state solutions.
引用
收藏
页码:1551 / 1573
页数:23
相关论文
共 38 条
[1]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[2]   Normalized solutions for a class of nonlinear Choquard equations [J].
Bartsch, Thomas ;
Liu, Yanyan ;
Liu, Zhaoli .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05)
[3]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[4]   Existence of Groundstates for a Class of Nonlinear Choquard Equations in the Plane [J].
Battaglia, Luca ;
Van Schaftingen, Jean .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :581-594
[5]   ON DIPOLAR QUANTUM GASES IN THE UNSTABLE REGIME [J].
Bellazzini, Jacopo ;
Jeanjean, Louis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :2028-2058
[6]   NORMALIZED SOLUTIONS TO THE MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION IN THE MASS CRITICAL AND SUPERCRITICAL REGIME [J].
Bonheure, Denis ;
Casteras, Jean-Baptiste ;
Gou, Tianxiang ;
Jeanjean, Louis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) :2167-2212
[7]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[8]   Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrodinger equation [J].
Chen, Jianqing ;
Guo, Boling .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :83-92
[9]   Existence of normalized solutions for the Schrodinger equation [J].
Deng, Shengbing ;
Wu, Qiaoran .
COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03) :575-585
[10]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135