Efficient Object Detection and Recognition of Body Welding Studs Based on Improved YOLOv7

被引:2
|
作者
Huang, Hong [1 ]
Peng, Xiangqian [1 ]
Hu, Xiaoping [2 ]
Ou, Wenchu [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Mech Engn, Xiangtan 411201, Peoples R China
[2] Prov Key Lab Hlth Maintenance Mech Equipment, Xiangtan 411201, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Welding studs; object detection; EfficientFormerV2; NWD; YOLOv7;
D O I
10.1109/ACCESS.2024.3376473
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The welding stud is a widely used part in automobile manufacturing, and its welding quality plays a crucial role in component assembly efficiency and vehicle quality. In welded stud target inspection, the complex body environment and different lighting conditions will have a certain impact on the inspection accuracy, and most of the existing methods have limited efficiency. In this paper, in order to solve the problems of low accuracy and slow speed in the stud target inspection process, we propose an innovative welding stud target inspection method based on YOLOv7. First, the EfficientFormerV2 backbone network is adopted to utilize the new partial convolution, which can extract spatial features more efficiently, reduce redundant computation, and improve the detection speed. Secondly, the bounding box loss function is changed to NWD, which reduces the loss value, accelerates the convergence speed of the network model, and better improves the detection of studs. After the test, the improved YOLOv7 network model is better than the traditional network in both speed and accuracy of welded stud target detection. (1) The mAP0.5 increased from 94.6% to 95.2%, and the mAP0.5:0.95 increased from 63.7% to 65.4%. (2) The detection speed increased from 96.1 f/s to 147.1 f/s. The results of the study can provide technical support for the subsequent tasks of automatic detection and position estimation of body welding studs.
引用
收藏
页码:41531 / 41541
页数:11
相关论文
共 50 条
  • [41] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [42] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55
  • [43] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507
  • [44] Mine Personnel Detection Algorithm Based on Improved YOLOv7
    Shao X.
    Li X.
    Yang Y.
    Yuan Z.
    Yang T.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (03): : 414 - 423
  • [45] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE ACCESS, 2024, 12 : 194390 - 194398
  • [46] Disease Detection of Asphalt Pavement Based on Improved YOLOv7
    Ni, Changshuang
    Li, Lin
    Luo, Wenting
    Qin, Yong
    Yang, Zhen
    Fu, Youhua
    Computer Engineering and Applications, 2023, 59 (13) : 305 - 316
  • [47] Characteristic Elements Detection of Tangka Based on Improved YOLOv7
    Li, Guomin
    Shi, Wei
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 388 - 394
  • [48] An occluded cherry tomato recognition model based on improved YOLOv7
    Hou, Guangyu
    Chen, Haihua
    Ma, Yike
    Jiang, Mingkun
    Hua, Chen
    Jiang, Chunmao
    Niu, Runxin
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [49] Safflower picking recognition in complex environments based on an improved YOLOv7
    Wang X.
    Xu Y.
    Zhou J.
    Chen J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (06): : 169 - 176
  • [50] Improved Cherry Detection Method at Night Based on YOLOv7: YOLOv7-Cherry
    Gai, Rongli
    Kong, Xiangzhou
    Qin, Shan
    Wei, Kai
    Computer Engineering and Applications, 2024, 60 (21) : 315 - 323