Flexible Composite Electrolyte Membranes with Fast Ion Transport Channels for Solid-State Lithium Batteries

被引:1
|
作者
Ma, Xiaojun [1 ]
Mao, Dongxu [1 ]
Xin, Wenkai [1 ]
Yang, Shangyun [1 ]
Zhang, Hao [1 ]
Zhang, Yanzhu [1 ]
Liu, Xundao [1 ]
Dong, Dehua [2 ]
Ye, Zhengmao [1 ]
Li, Jiajie [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[2] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
PVDF-HFP/LLZTO; net-like structure; flexible composite electrolyte; PVEC; POLYMER ELECTROLYTES; CONDUCTIVITY; LI7LA3ZR2O12; LLZTO;
D O I
10.3390/polym16050565
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO) formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC) enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm-2. Specifically, all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight for designing a flexible composite electrolyte for highly safe SSBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Silatrane:Molecule-Based Crystal Composite Solid-State Electrolyte for All-Solid-State Lithium Batteries
    Navarro-Suarez, Adriana M.
    Johansson, Patrik
    BATTERIES & SUPERCAPS, 2019, 2 (11) : 956 - 962
  • [32] Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteries
    Song, Xianli
    Yang, Lipeng
    Liu, Yi
    Wang, Gongying
    SOLID STATE IONICS, 2025, 423
  • [33] A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries
    Zhao, Xin-yue
    Wang, Jing-lun
    Luo, Hao
    Yao, Hu-rong
    Ouyang, Chu-ying
    Zhang, Ling-zhi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2016, 17 (02): : 155 - 162
  • [34] Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries
    Wang, Qin
    Sun, Qi
    Pu, Yulai
    Sun, Wenbo
    Lin, Chengjiang
    Duan, Xiaozheng
    Ren, Xiaoyan
    Lu, Lehui
    SMALL, 2024, 20 (22)
  • [35] Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries
    Wang, Yanbo
    Wu, Zhuoxi
    Zhang, Rong
    Chen, Ze
    Wei, Zhiquan
    Hou, Yue
    Li, Pei
    Yang, Shuo
    Huang, Zhaodong
    Li, Nan
    Zhi, Chunyi
    MATERIALS TODAY, 2024, 76 : 1 - 8
  • [36] Perspective Recycling for All Solid-State Lithium-Ion Batteries
    Azhari, Luqman
    Bong, Sungyool
    Ma, Xiaotu
    Wang, Yan
    MATTER, 2020, 3 (06) : 1845 - 1861
  • [37] Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries
    Yin, Jian-Hong
    Zhu, Hua
    Yu, Shi-Jin
    Dong, Yue-Bing
    Wei, Quan-Ya
    Xu, Guo-Qian
    Xiong, Yan
    Qian, Yan
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (20)
  • [38] Intertwined Nanosponge Solid-State Polymer Electrolyte for Rollable and Foldable Lithium-Ion Batteries
    Oh, Saewoong
    Van Hiep Nguyen
    Van-Tien Bui
    Nam, Sanghee
    Mahato, Manmatha
    Oh, Il-Kwon
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 11657 - 11668
  • [39] Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries
    Luo, Guangmei
    Yuan, Bing
    Guan, Tianyun
    Cheng, Fangyi
    Zhang, Wangqing
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3028 - 3034
  • [40] Functionalized polyoxometalates enable fast ion transport in solid-state batteries at room temperature
    Liu, Fangcheng
    Han, Shicheng
    Dong, Liwei
    Fang, Xikui
    CHEMICAL COMMUNICATIONS, 2024, 60 (31) : 4198 - 4201