New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators

被引:3
作者
Yaying, Taja [4 ]
Saikia, Nipen [5 ]
Mursaleen, Mohammad [1 ,2 ,3 ]
机构
[1] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[2] Chandigarh Univ, Univ Ctr Res & Dev, Mohali 140243, Punjab, India
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
[4] Dera Natung Govt Coll, Dept Math, Itanagar 791113, India
[5] Rajiv Gandhi Univ, Dept Math, Doimukh 791112, India
关键词
Matrix domains; Arithmetic divisor sum function; Schauder basis; alpha-; beta-; gamma-duals; matrix transformation; compactness; MATRIX TRANSFORMATIONS; HAUSDORFF MEASURE;
D O I
10.1515/forum-2023-0138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Define an infinite matrix D-a = (d(n,v)(a)) by d(n,v)(a) = {v(a)/sigma((a)) (n), v vertical bar 0, v (sic) n, where sigma((alpha)() n) is defined to be the sum of the alpha-th power of the positive divisors of n is an element of N, and construct the matrix domains l(p)(D-a) (0 < p < infinity), c(0)(D-a), c(D-a) and l(infinity)(D-a) defined by the matrix D-a. We develop Schauder bases and determine alpha-, beta- and -duals of these new spaces. We characterize some matrix transformation from l(p)(D-a), c(0)(D-a), c(D-a) and l(infinity)(D-a) to l(infinity), c, c(0) and l(1). Furthermore, we determine some criteria for compactness of an operator (or matrix) from X epsilon {l(p)(D-a), c(0)(D-a), c(D-a), l(infinity)(D-a)} to l(infinity), c, c(0) or l(1).
引用
收藏
页码:205 / 223
页数:19
相关论文
共 27 条
[1]  
Apostol T, 1976, INTRO ANAL NUMBER TH
[2]   A note on matrix domains of Copson matrix of order a and compact operators [J].
Ayman Mursaleen, Mohammad .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
[3]  
Basar F., 2011, Summability theory and its appliactions, DOI [10.2174/97816080545231120101, DOI 10.2174/97816080545231120101]
[4]  
Basar F., 2009, MATH J OKAYAMA U, V51, P149
[5]  
Basar F., 2003, UKR MATH J, V55, P136, DOI DOI 10.1023/A:1025080820961
[6]  
Demiriz S., 2016, Adv. Math, V5, P97
[7]   DOMAIN OF EULER-TOTIENT MATRIX OPERATOR IN THE SPACE Lp [J].
Demiriz, Serkan ;
Erdem, Sezer .
KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (02) :361-378
[8]   Almost convergence and Euler totient matrix [J].
Demiriz, Serkan ;
Ilkhan, Merve ;
Kara, Emrah Evren .
ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) :604-616
[9]   A New RH-Regular Matrix Derived by Jordan's Function and Its Domains on Some Double Sequence Spaces [J].
Erdem, Sezer ;
Demiriz, Serkan .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[10]   MATRIX TRANSFORMATIONS BETWEEN THE SEQUENCE-SPACES OF MADDOX [J].
GROSSEERDMANN, KG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (01) :223-238