Effect of zero-valent iron (ZVI) and biogas slurry reflux on methane production by anaerobic digestion of waste activated sludge

被引:1
|
作者
He, Junguo [1 ]
Cui, Xinxin [1 ]
Chu, Zhaorui [1 ]
Jiang, Zhifeng [1 ,2 ]
Pang, Heliang [3 ]
Xin, Xiaodong [4 ]
Duan, Shengye [5 ]
Zhong, Yijie [5 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Architectural Design & Res Inst Guangdong Prov, Guangzhou, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Xian, Peoples R China
[4] Dongguan Univ Technol, Res Ctr Ecoenvironm Engn, Dongguan, Peoples R China
[5] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
anaerobic digestion; biogas slurry; direct interspecies electron transfer; methanogenesis pathway; microbial community; zero-valent iron; PERFORMANCE; COMMUNITY; WATER; ACIDS;
D O I
10.1002/wer.10994
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aimed to improve anaerobic digestion (AD) efficiency through the addition of zero-valent iron (ZVI) and biogas slurry. This paper demonstrated that methane production was most effectively promoted at a biogas slurry reflux ratio of 60%. The introduction of ZVI into anaerobic systems does not enhance its bioavailability. However, both biogas slurry reflux and the combination of ZVI with biogas slurry reflux increase the relative abundance of microorganisms involved in the direct interspecific electron transfer (DIET) process. Among them, the dominant microorganisms Methanosaeta, Methanobacterium, Methanobrevibacter, and Methanolinea accounted for over 60% of the total methanogenic archaea. The Tax4Fun function prediction results indicate that biogas slurry reflux and the combination of ZVI with biogas slurry reflux can increase the content of key enzymes in the acetotrophic and hydrotrophic methanogenesis pathways, thereby strengthening these pathways. The corrosion of ZVI promotes hydrogen production, and the biogas slurry reflux provided additional alkaline and anaerobic microorganisms for the anaerobic system. Their synergistic effect promoted the growth of hydrotrophic methanogens and improved the activities of various enzymes in the hydrolysis and acidification phases, enhanced the system's buffer capacity, and prevented secondary environmental pollution.Practitioner Points Optimal methane production was achieved at a biogas slurry reflux ratio of 60%. Biogas slurry reflux in anaerobic digestion substantially reduced discharge. ZVI addition in combination with biogas slurry reflux facilitates the DIET process. The mechanism of efficient methane production by the metal ions in the biogas slurry reflux to enhance the interspecific electron transport was revealed. Through different biogas slurry reflux ratios, the metal ions and other substances in the process of biogas slurry reflux were controlled to enhance the interspecific electron transport behavior. image
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge
    Liu, Lei
    Chen, Ying
    Qi, Jun
    Sun, Jianliang
    Zhang, Liguo
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 375
  • [2] Enhancing the Biogas Production of Sludge Anaerobic Digestion by a Combination of Zero-Valent Iron Foil and Persulfate
    Hu, Yangqing
    Wang, Fei
    Lv, Guojun
    Chi, Yong
    ENERGY & FUELS, 2019, 33 (08) : 7436 - 7442
  • [3] Effect of nanoscale zero-valent iron on sludge anaerobic digestion
    Jia, Tongtong
    Wang, Zaizhao
    Shan, Haiqiang
    Liu, Yuanfeng
    Gong, Lei
    RESOURCES CONSERVATION AND RECYCLING, 2017, 127 : 190 - 195
  • [4] Potential promotion of activated carbon supported nano zero-valent iron on anaerobic digestion of waste activated sludge
    Zhou, Jun
    Zhou, Ying
    You, Xiaogang
    Zhang, Haonan
    Gong, Lei
    Wang, Jin
    Zuo, Tong
    Environmental Technology (United Kingdom), 2022, 43 (23): : 3538 - 3551
  • [5] Potential promotion of activated carbon supported nano zero-valent iron on anaerobic digestion of waste activated sludge
    Zhou, Jun
    Zhou, Ying
    You, Xiaogang
    Zhang, Haonan
    Gong, Lei
    Wang, Jin
    Zuo, Tong
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (23) : 3538 - 3551
  • [6] Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
    Feng, Yinghong
    Zhang, Yaobin
    Quan, Xie
    Chen, Suo
    WATER RESEARCH, 2014, 52 : 242 - 250
  • [7] Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge
    Wang, Tongyu
    Qin, Yujie
    Cao, Yan
    Han, Bin
    Ren, Junyi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (28) : 22371 - 22381
  • [8] Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge
    Tongyu Wang
    Yujie Qin
    Yan Cao
    Bin Han
    Junyi Ren
    Environmental Science and Pollution Research, 2017, 24 : 22371 - 22381
  • [9] Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion process
    Zhou, Jun
    You, Xiaogang
    Jia, Tongtong
    Niu, Baowei
    Gong, Lei
    Yang, Xiaoqi
    Zhou, Ying
    ENVIRONMENTAL TECHNOLOGY, 2020, 41 (24) : 3199 - 3209
  • [10] Dosage effect of micron zero-valent iron during thermophilic anaerobic digestion of waste activated sludge: Performance and functional community
    Li, Wenqian
    Chen, Jianglin
    Pang, Lina
    Lu, Yuanyuan
    Yang, Ping
    ENVIRONMENTAL RESEARCH, 2023, 237