The approximation property for locally compact quantum groups

被引:2
|
作者
Daws, Matthew [1 ]
Krajczok, Jacek [2 ]
Voigt, Christian [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Locally compact quantum groups; Approximation property; FREE-PRODUCTS; BOUNDED MULTIPLIERS; LIE-GROUPS; AMENABILITY; SUBGROUPS; ALGEBRAS; THEOREM;
D O I
10.1016/j.aim.2023.109452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Haagerup-Kraus approximation property for locally compact quantum groups, generalising and unifying previous work by Kraus-Ruan and Crann. Along the way we discuss how multipliers of quantum groups interact with the C*-algebraic theory of locally compact quantum groups. Several inheritance properties of the approximation property are established in this setting, including passage to quantum subgroups, free products of discrete quantum groups, and duals of double crossed products. We also discuss a relation to the weak* operator approximation property. For discrete quantum groups, we introduce a central variant of the approximation property, and relate this to a version of the approximation property for rigid C*-tensor categories, building on work of Arano-De Laat-Wahl. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:79
相关论文
共 50 条
  • [31] Hopf images in locally compact quantum groups
    Joziak, Pawel
    Kasprzak, Pawel
    Soltan, Piotr M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 141 - 166
  • [32] Averaging multipliers on locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [33] On the similarity problem for locally compact quantum groups
    Brannan, Michael
    Youn, Sang-Gyun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (04) : 1313 - 1337
  • [34] A Note on Amenability of Locally Compact Quantum Groups
    Soltan, Piotr M.
    Viselter, Ami
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02): : 424 - 430
  • [35] Intermediate subfactors and locally compact quantum groups
    Enock, M
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 305 - 330
  • [36] Induction for locally compact quantum groups revisited
    Kalantar, Mehrdad
    Kasprzak, Pawel
    Skalski, Adam
    Soltan, Piotr M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 1071 - 1093
  • [37] A simple definition for locally compact quantum groups
    Kustermans, J
    Vaes, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10): : 871 - 876
  • [38] Locally compact quantum groups in the universal setting
    Kustermans, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (03) : 289 - 338
  • [39] Uncertainty principles for locally compact quantum groups
    Jiang, Chunlan
    Liu, Zhengwei
    Wu, Jinsong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2399 - 2445
  • [40] Weak mixing for locally compact quantum groups
    Viselter, Ami
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1657 - 1680