The approximation property for locally compact quantum groups

被引:2
|
作者
Daws, Matthew [1 ]
Krajczok, Jacek [2 ]
Voigt, Christian [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Locally compact quantum groups; Approximation property; FREE-PRODUCTS; BOUNDED MULTIPLIERS; LIE-GROUPS; AMENABILITY; SUBGROUPS; ALGEBRAS; THEOREM;
D O I
10.1016/j.aim.2023.109452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Haagerup-Kraus approximation property for locally compact quantum groups, generalising and unifying previous work by Kraus-Ruan and Crann. Along the way we discuss how multipliers of quantum groups interact with the C*-algebraic theory of locally compact quantum groups. Several inheritance properties of the approximation property are established in this setting, including passage to quantum subgroups, free products of discrete quantum groups, and duals of double crossed products. We also discuss a relation to the weak* operator approximation property. For discrete quantum groups, we introduce a central variant of the approximation property, and relate this to a version of the approximation property for rigid C*-tensor categories, building on work of Arano-De Laat-Wahl. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:79
相关论文
共 50 条
  • [1] The approximation property and exactness of locally compact groups
    Suzuki, Yuhei
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (01) : 263 - 275
  • [2] The Haagerup property for locally compact quantum groups
    Daws, Matthew
    Fima, Pierre
    Skalski, Adam
    White, Stuart
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 189 - 229
  • [3] Property T for locally compact quantum groups
    Chen, Xiao
    Ng, Chi-Keung
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (03)
  • [4] Quantum Random Walk Approximation on Locally Compact Quantum Groups
    J. Martin Lindsay
    Adam G. Skalski
    Letters in Mathematical Physics, 2013, 103 : 765 - 775
  • [5] Quantum Random Walk Approximation on Locally Compact Quantum Groups
    Lindsay, J. Martin
    Skalski, Adam G.
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (07) : 765 - 775
  • [7] A Homological Property and Arens Regularity of Locally Compact Quantum Groups
    Ghanei, Mohammad Reza
    Nasr-Isfahani, Rasoul
    Nemati, Mehdi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 122 - 130
  • [8] Locally compact quantum groups
    Kustermans, J
    Vaes, S
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06): : 837 - 934
  • [9] Locally compact quantum groups
    Kustermans, Johan
    QUANTUM INDEPENDENT INCREMENT PROCESSES I: FROM CLASSICAL PROBABILITY TO QUANTUM STOCHASTIC CALCULUS, 2005, 1865 : 99 - 180
  • [10] A dichotomy property for locally compact groups
    Ferrer, Maria, V
    Hernandez, Salvador
    Tarrega, Luis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (04) : 869 - 891