Climate Change Impact on Agricultural Land Suitability: An Interpretable Machine Learning-Based Eurasia Case Study

被引:9
作者
Shevchenko, Valeriy [1 ]
Lukashevich, Aleksandr [1 ,2 ]
Taniushkina, Daria [1 ]
Bulkin, Alexander [1 ,3 ]
Grinis, Roland [1 ,4 ]
Kovalev, Kirill [5 ]
Narozhnaia, Veronika [5 ]
Sotiriadi, Nazar [5 ]
Krenke, Alexander [6 ]
Maximov, Yury [7 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[2] Int Ctr Corp Data Anal, F-38042 Grenoble, France
[3] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119991, Russia
[4] Moscow Inst Phys & Technol, Moscow 141701, Russia
[5] Sberbank PJSC, Moscow 117997, Russia
[6] Russian Acad Sci, Inst Geog, Moscow 119017, Russia
[7] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87544 USA
关键词
Agriculture; Climate change; Crops; Machine learning; Food security; Classification algorithms; Sustainable development; Humanitarian activities; Risk management; Irrigation; Economics; Social factors; Carbon emissions; Terrain factors; classification; climate change; cropland; food security; irrigation; machine learning;
D O I
10.1109/ACCESS.2024.3358865
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study addresses the critical global issue of food security, particularly under the influence of climate change on agricultural land suitability. The primary objective of our research is to predict the risks associated with land suitability degradation and changes in irrigation patterns, directly impacting food security. This research aligns with the United Nations' sustainable development goals to reduce hunger and malnutrition. Central Eurasia, a region facing unique economic and social challenges, serves as the focal point of our investigation, providing a pertinent example for analyzing the effects of climate change on food security. In our approach, we employ interpretable machine learning techniques to analyze the impact of climate change on agricultural land suitability under different carbon emission scenarios. The developed model demonstrates strong performance, evidenced by an accuracy of 86% and a mean average precision of 72% in a multi-class land suitability classification task. Focusing on the most vulnerable regions in Eastern Europe and Northern Asia, our research provides crucial insights for policymakers. These insights are instrumental for strategic planning, including the allocation of critical resources like water and fertilizers, to prevent humanitarian crises. The results demonstrate that machine learning can be a powerful tool in predicting and managing the impacts of climate change on food security.
引用
收藏
页码:15748 / 15763
页数:16
相关论文
共 53 条
[41]  
Sundararajan M, 2017, PR MACH LEARN RES, V70
[42]  
Taud H., 2018, Geomatic approaches for modeling land change scenarios, P451, DOI [DOI 10.1007/978-3-319-60801-3_27, 10.1007/ 978-3-319-60801-3_27]
[43]   The use of the multi-model ensemble in probabilistic climate projections [J].
Tebaldi, Claudia ;
Knutti, Reto .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1857) :2053-2075
[44]  
Thenkahail P., 2016, Rep. GFSADIKCD v001
[45]   Global food demand and the sustainable intensification of agriculture [J].
Tilman, David ;
Balzer, Christian ;
Hill, Jason ;
Befort, Belinda L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :20260-20264
[46]   A Review of Neural Networks for Air Temperature Forecasting [J].
Tran, Trang Thi Kieu ;
Bateni, Sayed M. ;
Ki, Seo Jin ;
Vosoughifar, Hamidreza .
WATER, 2021, 13 (09)
[47]  
Turcotte D.L, 1992, FRACTAL CHAOS GEOLOG
[48]  
van Vliet J., 2018, GEOMATIC APPROACHES, P485, DOI DOI 10.1007/978-3-319-60801-3
[49]  
Vaswani A, 2017, ADV NEUR IN, V30
[50]   Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1 [J].
Voldoire, A. ;
Saint-Martin, D. ;
Senesi, S. ;
Decharme, B. ;
Alias, A. ;
Chevallier, M. ;
Colin, J. ;
Gueremy, J-F ;
Michou, M. ;
Moine, M-P ;
Nabat, P. ;
Roehrig, R. ;
Salas y Melia, D. ;
Seferian, R. ;
Valcke, S. ;
Beau, I ;
Belamari, S. ;
Berthet, S. ;
Cassou, C. ;
Cattiaux, J. ;
Deshayes, J. ;
Douville, H. ;
Ethe, C. ;
Franchisteguy, L. ;
Geoffroy, O. ;
Levy, C. ;
Madec, G. ;
Meurdesoif, Y. ;
Msadek, R. ;
Ribes, A. ;
Sanchez-Gomez, E. ;
Terray, L. ;
Waldman, R. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (07) :2177-2213