Energy estimates of Yang-Mills functional

被引:0
作者
Huang, Teng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Uhlenbeck compactness; ASD connection; energy discretization; CONNECTIONS; COMPACTNESS; GAP;
D O I
10.1142/S1793525323500619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the Uhlenbeck compactness theorem and Lojasiewicz-Simon gradient inequality of the Yang-Mills L2-energy functional to prove some energy properties of Yang-Mills connections. In particular, we can get the discreteness of Yang-Mills energy from the compactness of the moduli space of Yang-Mills connections.
引用
收藏
页码:681 / 692
页数:12
相关论文
共 24 条
[1]  
DONALDSON SK, 1990, GEOMETRY 4 MANIFOLDS
[2]  
Feehan P. M. N., 2020, MEM AM MATH SOC, V267
[3]  
Feehan P. M. N., arXiv
[4]   Lojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces [J].
Feehan, Paul M. N. ;
Maridakis, Manousos .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 765 :35-67
[5]   Energy gap for Yang-Mills connections, II: Arbitrary closed Riemannian manifolds [J].
Feehan, Paul M. N. .
ADVANCES IN MATHEMATICS, 2017, 312 :547-587
[6]   Energy gap for Yang-Mills connections, I: Four-dimensional closed Riemannian manifolds [J].
Feehan, Paul M. N. .
ADVANCES IN MATHEMATICS, 2016, 296 :55-84
[7]  
FINTUSHEL R, 1984, J DIFFER GEOM, V20, P523, DOI 10.4310/jdg/1214439293
[8]  
Greub W., 1968, Lecture Notes in Mathematics, V616, P217
[9]  
HUANG S.-Z., 2006, Mathematical Surveys and Monographs, V126
[10]  
Isobe T, 2010, REV MAT IBEROAM, V26, P729