A note on the bound for the class of certain nilpotent groups

被引:0
|
作者
Qu, Haipeng [1 ,2 ]
Gao, Jixia [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030092, Shanxi, Peoples R China
关键词
Nilpotency class; nilpotent groups; the bound of nilpotency class;
D O I
10.1080/00927872.2023.2285500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume G is a nilpotent group of class > 3 in which every proper subgroup has class at most 3. In this note, we give the exact upper bound of class of G.
引用
收藏
页码:2167 / 2173
页数:7
相关论文
共 50 条
  • [21] BOCKSTEIN THEOREM FOR NILPOTENT GROUPS
    Cencelj, M.
    Dydak, J.
    Mitra, A.
    Vavpetic, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1501 - 1510
  • [22] On A-critical nilpotent groups
    Wang, YM
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (01) : 295 - 305
  • [23] MEMBERSHIP PROBLEMS IN NILPOTENT GROUPS
    Bodart, Corentin
    GROUPS COMPLEXITY CRYPTOLOGY, 2025, 17 (01)
  • [24] Parallel complexity for nilpotent groups
    Myasnikov, Alexei
    Weiss, Armin
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (05) : 895 - 928
  • [25] A counter example for nilpotent groups
    LIU HeGuo1
    2School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (11) : 3041 - 3048
  • [26] Virtual endomorphisms of nilpotent groups
    Berlatto, Adilson
    Sidki, Said
    GROUPS GEOMETRY AND DYNAMICS, 2007, 1 (01) : 21 - 46
  • [27] Quasidiagonal representations of nilpotent groups
    Eckhardt, Caleb
    ADVANCES IN MATHEMATICS, 2014, 254 : 15 - 32
  • [28] ON NILPOTENT GROUPS AND CONJUGACY CLASSES
    Adan-Bante, Edith
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 345 - 356
  • [29] A counter example for nilpotent groups
    Liu HeGuo
    Zhang JiPing
    Liao Jun
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3041 - 3048
  • [30] A counter example for nilpotent groups
    HeGuo Liu
    JiPing Zhang
    Jun Liao
    Science China Mathematics, 2010, 53 : 3041 - 3048