Charging characteristics of finned thermal energy storage tube under variable rotation

被引:8
|
作者
Guo, Junfei [1 ]
Yang, Bo [1 ]
Li, Ze [1 ]
Lu, Liu [1 ]
Yang, Xiaohu [1 ,2 ]
He, Ya-Ling [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Bldg Environm & Sustainabil Technol, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar photovoltaic-thermal system; Thermal energy storage tube; Metal fins; Variable rotation; SHELL-AND-TUBE; HEAT-TRANSFER; MELTING PROCESS; PHASE-CHANGE; PARAFFIN; UNIT; PCM; ENHANCEMENT; PERFORMANCE; BATTERY;
D O I
10.1016/j.applthermaleng.2023.121887
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar photovoltaic-thermal (PVT) systems effectively offset the drawbacks of intermittent solar and low photovoltaic conversion efficiency. Thermal energy storage (TES) tanks of PVT systems with high charging efficiency and consistent thermal safety might achieve efficient utilization of solar energy for building. A new variable rotational strategy has been proposed to optimize the charging characteristics for TES tubes, taking into consideration the non-uniformity of melting. A series of simulations based on the volume-averaged model are conducted to investigate the thermal energy storage property of TES tubes under variable rotary mechanism. Qualitative and quantitative comparisons are made between variable rotation (omega = 1.5-0.5, 1.5-1.0, 1.5-2.0 rad & sdot;s  1), constant rotation (omega = 1.5 rad & sdot;s  1), and stationary systems. The focus of the comparison is melting efficiency, temperature distribution, and natural convection. The results indicate that rotation effectively shortens charging time, with a 57.62% and 15.73% reduction with variable rotary mechanisms of 1.5-1.0 rad & sdot;s  1 when compared with stationary and constant rotating tubes. Meanwhile, in the final moment, the greatest medium-temperature (55-65 degrees C) proportion of 90.58% and less low-temperature (25-55 degrees C) and hightemperature (65-70 degrees C) paraffin occupation of 4.67% and 4.75% could be obtained, reflecting the completed latent heat storage and stable thermal safety. The optimal variable rotation achieves improvements of 47.84% and 106.73% in time-integral Grashof number (Gr) and heat storage rate, compared with traditional stationary tubes.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Experimental Investigation on Finned Solar Still With Enhanced Thermal Energy Storage
    Kumar, Thangavel Ramalingam Sathish
    Jegadheeswaran, Selvaraj
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (09)
  • [32] Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system
    Zhang, P.
    Ma, F.
    Xiao, X.
    APPLIED ENERGY, 2016, 173 : 255 - 271
  • [33] A geometrical optimization and comparison study on the charging and discharging performance of shell-and-tube thermal energy storage systems
    Mohaghegh, Mohammad Reza
    Tasnim, Syeda Humaira
    Mahmud, Shohel
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [34] Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube
    Zheng, Zhang-Jing
    Sun, Yu
    Chen, Yang
    He, Chen
    Yin, Hang
    Xu, Yang
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [35] Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage
    Amagour, Mohamed El Habib
    Bennajah, Mounir
    Rachek, Adil
    JOURNAL OF CLEANER PRODUCTION, 2021, 280
  • [36] Transient prediction model of finned tube energy storage system based on thermal network
    Yin, Jianbao
    Wang, Shisong
    Hou, Xu
    Wang, Zixian
    Ye, Mengyan
    Xing, Yuming
    APPLIED ENERGY, 2023, 336
  • [37] Heat transfer characteristics of PCM inside a modified design of shell and tube latent heat thermal energy storage unit
    Zaytoun, Mostafa M.
    El-Bashouty, Mohaned M.
    Sorour, Medhat M.
    Alnakeeb, Mohamed A.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 49
  • [38] Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation
    Shen, Zu-Guo
    Chen, Shuai
    Chen, Ben
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [39] Performance assessment of a phase change charging mode in a vertical thermal energy storage system
    Asker, Mustafa
    Akal, Dincer
    Ezan, Mehmet Akif
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (06) : 7610 - 7625
  • [40] A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system
    Khosroshahi, Alireza Jaberi
    Hossainpour, Siamak
    JOURNAL OF ENERGY STORAGE, 2022, 55