Charging characteristics of finned thermal energy storage tube under variable rotation

被引:8
|
作者
Guo, Junfei [1 ]
Yang, Bo [1 ]
Li, Ze [1 ]
Lu, Liu [1 ]
Yang, Xiaohu [1 ,2 ]
He, Ya-Ling [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Bldg Environm & Sustainabil Technol, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar photovoltaic-thermal system; Thermal energy storage tube; Metal fins; Variable rotation; SHELL-AND-TUBE; HEAT-TRANSFER; MELTING PROCESS; PHASE-CHANGE; PARAFFIN; UNIT; PCM; ENHANCEMENT; PERFORMANCE; BATTERY;
D O I
10.1016/j.applthermaleng.2023.121887
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar photovoltaic-thermal (PVT) systems effectively offset the drawbacks of intermittent solar and low photovoltaic conversion efficiency. Thermal energy storage (TES) tanks of PVT systems with high charging efficiency and consistent thermal safety might achieve efficient utilization of solar energy for building. A new variable rotational strategy has been proposed to optimize the charging characteristics for TES tubes, taking into consideration the non-uniformity of melting. A series of simulations based on the volume-averaged model are conducted to investigate the thermal energy storage property of TES tubes under variable rotary mechanism. Qualitative and quantitative comparisons are made between variable rotation (omega = 1.5-0.5, 1.5-1.0, 1.5-2.0 rad & sdot;s  1), constant rotation (omega = 1.5 rad & sdot;s  1), and stationary systems. The focus of the comparison is melting efficiency, temperature distribution, and natural convection. The results indicate that rotation effectively shortens charging time, with a 57.62% and 15.73% reduction with variable rotary mechanisms of 1.5-1.0 rad & sdot;s  1 when compared with stationary and constant rotating tubes. Meanwhile, in the final moment, the greatest medium-temperature (55-65 degrees C) proportion of 90.58% and less low-temperature (25-55 degrees C) and hightemperature (65-70 degrees C) paraffin occupation of 4.67% and 4.75% could be obtained, reflecting the completed latent heat storage and stable thermal safety. The optimal variable rotation achieves improvements of 47.84% and 106.73% in time-integral Grashof number (Gr) and heat storage rate, compared with traditional stationary tubes.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool
    Huang, Yongping
    Song, Liping
    Wu, Suchen
    Liu, Xiangdong
    APPLIED THERMAL ENGINEERING, 2022, 200
  • [22] INVESTIGATION OF MELTING HEAT TRANSFER CHARACTERISTICS OF LATENT HEAT THERMAL STORAGE UNIT WITH FINNED TUBE
    Hamdani
    Irwansyah
    Mahlia, T. M. I.
    INTERNATIONAL CONFERENCE ON ADVANCES SCIENCE AND CONTEMPORARY ENGINEERING 2012, 2012, 50 : 122 - 128
  • [23] Ice formation around a finned-tube heat exchanger for cold thermal energy storage
    Kayansayan, N
    Acar, MA
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2006, 45 (04) : 405 - 418
  • [24] Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger
    Mohamed, Fadl
    Eames, Philip C.
    EXPERIMENTAL HEAT TRANSFER, 2023, 36 (02) : 143 - 162
  • [25] Effect of snow crystal fin arrangements on thermal transfer and energy storage/release characteristics in a concentric tube latent heat energy storage unit
    Hong, Yuxiang
    Zhao, Lei
    Huang, Yongchun
    Shi, Yuan
    Du, Juan
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 50
  • [26] Natural convection during melting in vertical finned tube latent thermal energy storage systems
    Vogel, J.
    Johnson, M.
    APPLIED ENERGY, 2019, 246 : 38 - 52
  • [27] Accelerated charging of PCM in a horizontal shell and multi-finned tube energy storage system
    Anish, R.
    Mariappan, V.
    Hitha, P. S.
    Arun, B. S.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 9702 - 9706
  • [28] Thermal and exergetic analysis of shell and eccentric-tube thermal energy storage
    Zhang, Shengqi
    Pu, Liang
    Xu, Lingling
    Ma, Zhenjun
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [29] Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems
    Gasia, Jaume
    Diriken, Jan
    Bourke, Malcolm
    Van Bael, Johan
    Cabeza, Luisa F.
    RENEWABLE ENERGY, 2017, 114 : 934 - 944
  • [30] Numerical evaluation of a triple concentric-tube latent heat thermal energy storage
    Basal, Birol
    Unal, Ahmet
    SOLAR ENERGY, 2013, 92 : 196 - 205