Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts

被引:0
|
作者
Thomas, Patrick B. [1 ,2 ,3 ]
Alinezhad, Saeid [1 ,2 ]
Joshi, Andre [1 ,2 ,3 ,4 ]
Sweeney, Katrina [1 ,2 ]
Tse, Brian W. C. [5 ]
Tevz, Gregor [1 ,2 ]
Mcpherson, Stephen [1 ,2 ]
Nelson, Colleen C. [1 ,2 ,6 ]
Williams, Elizabeth D. [1 ,2 ,3 ,6 ]
机构
[1] Queensland Univ Technol QUT, Translat Res Inst TRI, Sch Biomed Sci, Fac Hlth, Brisbane, Qld 4102, Australia
[2] Australian Prostate Canc Res Ctr Queensland, Brisbane, Qld 4102, Australia
[3] Queensland Bladder Canc Initiat QBCI, Brisbane, Qld 4102, Australia
[4] Princess Alexandra Hosp, Dept Urol, Brisbane, Qld 4102, Australia
[5] Translat Res Inst, Preclin Imaging Facil, Brisbane, Qld 4102, Australia
[6] Queensland Univ Technol QUT, Ctr Genom & Personalised Hlth, Brisbane, Qld 4000, Australia
关键词
prostate cancer; organoids; precision medicine; patient-derived xenograft; androgen receptor; DRUG DISCOVERY; STATISTICS; MODEL;
D O I
10.3390/curroncol30110683
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Patient-derived xenograft (PDX) models have been established as important preclinical cancer models, overcoming some of the limitations associated with the use of cancer cell lines. The utility of prostate cancer PDX models has been limited by an inability to genetically manipulate them in vivo and difficulties sustaining PDX-derived cancer cells in culture. Viable, short-term propagation of PDX models would allow in vitro transfection with traceable reporters or manipulation of gene expression relevant to different studies within the prostate cancer field. Here, we report an organoid culture system that supports the growth of prostate cancer PDX cells in vitro and permits genetic manipulation, substantially increasing the scope to use PDXs to study the pathobiology of prostate cancer and define potential therapeutic targets. We have established a short-term PDX-derived in vitro cell culture system which enables genetic manipulation of prostate cancer PDXs LuCaP35 and BM18. Genetically manipulated cells could be re-established as viable xenografts when re-implanted subcutaneously in immunocompromised mice and were able to be serially passaged. Tumor growth of the androgen-dependent LuCaP35 PDX was significantly inhibited following depletion of the androgen receptor (AR) in vivo. Taken together, this system provides a method to generate novel preclinical models to assess the impact of controlled genetic perturbations and allows for targeting specific genes of interest in the complex biological setting of solid tumors.
引用
收藏
页码:9437 / 9447
页数:11
相关论文
共 50 条
  • [21] PATIENT-DERIVED XENOGRAFTS FOR ACCELERATING PROSTATE CANCER DISCOVERY AND DRUG DEVELOPMENT
    Fazli, Ladan
    Lin, Dong
    Wang, Yuzhuo
    INTERNATIONAL JOURNAL OF UROLOGY, 2014, 21 : A45 - A45
  • [22] Unraveling the Global Proteome and Phosphoproteome of Prostate Cancer Patient-Derived Xenografts
    Sychev, Zoi E.
    Day, Abderrahman
    Bergom, Hannah E.
    Larson, Gabrianne
    Ali, Atef
    Ludwig, Megan
    Boytim, Ella
    Coleman, Ilsa
    Corey, Eva
    Plymate, Stephen R.
    Nelson, Peter S.
    Hwang, Justin H.
    Drake, Justin M.
    MOLECULAR CANCER RESEARCH, 2024, 22 (05) : 452 - 464
  • [23] Patient-derived xenografts and organoids model therapy response in prostate cancer
    Sofia Karkampouna
    Federico La Manna
    Andrej Benjak
    Mirjam Kiener
    Marta De Menna
    Eugenio Zoni
    Joël Grosjean
    Irena Klima
    Andrea Garofoli
    Marco Bolis
    Arianna Vallerga
    Jean-Philippe Theurillat
    Maria R. De Filippo
    Vera Genitsch
    David Keller
    Tijmen H. Booij
    Christian U. Stirnimann
    Kenneth Eng
    Andrea Sboner
    Charlotte K. Y. Ng
    Salvatore Piscuoglio
    Peter C. Gray
    Martin Spahn
    Mark A. Rubin
    George N. Thalmann
    Marianna Kruithof-de Julio
    Nature Communications, 12
  • [24] Patient-derived xenografts and organoids model therapy response in prostate cancer
    Karkampouna, S.
    La Manna, F.
    Benjak, A.
    Kiener, M.
    De Menna, M.
    Zoni, E.
    Grosjean, J.
    Klima, I.
    Garofoli, A.
    Bolis, M.
    Vallerga, A.
    Theurillat, J.
    De Filippo, M. R.
    Genitsch, V.
    Keller, D.
    Booij, T. H.
    Stirnimann, C. U.
    Eng, K.
    Sboner, A.
    Ng, C. K. Y.
    Piscuoglio, S.
    Gray, P. C.
    Rubin, M. A.
    Thalmann, G. N.
    Kruithof-De, J.
    EUROPEAN UROLOGY, 2021, 79 : S589 - S590
  • [25] Prostate cancer: A personalised approach through the development of patient-derived xenografts
    Cannistraci, A.
    Parry, M.
    Smith, M.
    Ramani, V.
    Lau, M.
    Shanks, J.
    Daisuke, N.
    Clarke, N.
    Dhomen, N.
    Baena, E.
    Marais, R.
    EUROPEAN JOURNAL OF CANCER, 2016, 61 : S185 - S185
  • [26] Patient-derived xenografts: A platform for accelerating translational research in prostate cancer
    Davies, Alastair H.
    Wang, Yuzhuo
    Zoubeidi, Amina
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2018, 462 : 17 - 24
  • [27] Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts
    Cassidy, John W.
    Caldas, Carlos
    Bruna, Alejandra
    CANCER RESEARCH, 2015, 75 (15) : 2963 - 2968
  • [28] Targeting AKT with Oridonin Inhibits Growth of Esophageal Squamous Cell Carcinoma In Vitro and Patient-Derived Xenografts In Vivo
    Song, Mengqiu
    Liu, Xuejiao
    Liu, Kangdong
    Zhao, Ran
    Huang, Hai
    Shi, Yuanyuan
    Zhang, Man
    Zhou, Silei
    Xie, Hua
    Chen, Hanyong
    Li, Yin
    Zheng, Yan
    Wu, Qiong
    Liu, Fangfang
    Li, Enmin
    Bode, Ann M.
    Dong, Zigang
    Lee, Mee-Hyun
    MOLECULAR CANCER THERAPEUTICS, 2018, 17 (07) : 1540 - 1553
  • [29] Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma in vitro and patient-derived xenografts in vivo
    Song, Mengqiu
    Zhao, Ran
    Xie, Hua
    Chen, Hanyong
    Liu, Kangdong
    Bode, Ann M.
    Lee, Mee-Hyun
    Dong, Zigang
    CANCER RESEARCH, 2019, 79 (13)
  • [30] Patient-Derived Tumor Xenografts Why Now?
    Liu, Edison T.
    Bult, Carol J.
    Shultz, Leonard D.
    JAMA ONCOLOGY, 2016, 2 (05) : 567 - 568