Sculpting DNA-based synthetic cells through phase separation and phase-targeted activity

被引:9
|
作者
Malouf, Layla [1 ,2 ]
Tanase, Diana A. [1 ,2 ]
Fabrini, Giacomo [2 ]
Brady, Ryan A. [3 ]
Paez-Perez, Miguel [2 ]
Leathers, Adrian [4 ]
Booth, Michael J. [5 ]
Di Michele, Lorenzo [1 ,2 ,6 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] Imperial Coll London, Dept Chem, London W12 7TA, England
[3] St Jude Childrens Res Hosp, Dept Struct Biol, Memphis, TN USA
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] UCL, Dept Chem, London WC1H 0AJ, England
[6] Imperial Coll London, fabriCELL, London, England
来源
CHEM | 2023年 / 9卷 / 11期
基金
英国科研创新办公室; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
FUNCTIONALITY; BIOLOGY; DESIGN;
D O I
10.1016/j.chempr.2023.10.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic cells, like their biological counterparts, require internal compartments with distinct chemical and physical properties where different functionalities can be localized. Inspired by membrane -less compartmentalization in biological cells, here, we demonstrate how microphase separation can be used to engineer heteroge-neous cell-like architectures with programmable morphology and compartment-targeted activity. The synthetic cells self-assemble from amphiphilic DNA nanostructures, producing core-shell con-densates due to size-induced de-mixing. Lipid deposition and phase-selective etching are then used to generate a porous pseudo-membrane, a cytoplasm analog, and membrane-less organ-elles. The synthetic cells can sustain RNA synthesis via in vitro tran-scription, leading to cytoplasm and pseudo-membrane expansion caused by an accumulation of the transcript. Our approach exem-plifies how architectural and functional complexity can emerge from a limited number of distinct building blocks, if molecular-scale programmability, emergent biophysical phenomena, and biochem-ical activity are coupled to mimic those observed in live cells.
引用
收藏
页码:3347 / 3364
页数:19
相关论文
共 50 条
  • [1] Recent Progress on Phase Separation of DNA-Based System
    Zhu, Mingyang
    Cai, Zhuang
    Gao, Rui
    Chen, Yun
    Wang, Jianbang
    Liu, Huajie
    MACROMOLECULAR RAPID COMMUNICATIONS, 2025,
  • [2] Engineering DNA-based cytoskeletons for synthetic cells
    Jahnke, Kevin
    Goepfrich, Kerstin
    INTERFACE FOCUS, 2023, 13 (05)
  • [3] Functional DNA-based cytoskeletons for synthetic cells
    Zhan, Pengfei
    Jahnke, Kevin
    Liu, Na
    Gopfrich, Kerstin
    NATURE CHEMISTRY, 2022, 14 (08) : 958 - 963
  • [4] Functional DNA-based cytoskeletons for synthetic cells
    Pengfei Zhan
    Kevin Jahnke
    Na Liu
    Kerstin Göpfrich
    Nature Chemistry, 2022, 14 : 958 - 963
  • [5] Synthetic phase separation tools for manipulating protein activity in living cells
    Tsukiji, Shinya
    CANCER SCIENCE, 2023, 114 : 718 - 718
  • [6] Actuation of DNA-based functional assemblies for synthetic cells
    Jahnke, Kevin
    Goepfrich, Kerstin
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 88 - 88
  • [7] Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation
    Martin, Nicolas
    CHEMBIOCHEM, 2019, 20 (20) : 2553 - 2568
  • [8] Printing and Erasing of DNA-Based Photoresists Inside Synthetic Cells
    Walther, Tobias
    Jahnke, Kevin
    Abele, Tobias
    Goepfrich, Kerstin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (25)
  • [9] Effects of phase-targeted auditory stimulation on non-REM sleep EEG activity in healthy children
    Furrer, Melanie
    Gambin, Veronika
    Wehlage, Clara
    Strahler, Gina
    Leach, Sven
    Huber, Reto
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [10] Dependencies between effective parameters in coarse-grained models for phase separation of DNA-based fluids
    Karmakar, Soumen De
    Speck, Thomas
    Journal of Chemical Physics, 2024, 161 (23):