Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay

被引:0
|
作者
Stewart, James [1 ]
Shawon, Jakaria [2 ,3 ,4 ]
Ali, Md Ackas [1 ]
Williams, Blaise [1 ]
Shahinuzzaman, A. D. A. [5 ]
Rupa, Sharmin Akther [6 ]
Al-Adhami, Taha [7 ]
Jia, Ruoqing [8 ]
Bourque, Cole [1 ]
Faddis, Ryan [1 ]
Stone, Kaylee [1 ]
Sufian, Md Abu [9 ]
Islam, Rajib [3 ,4 ,10 ]
McShan, Andrew C. [8 ]
Rahman, Khondaker Miraz [7 ]
Halim, Mohammad A. [1 ,11 ]
机构
[1] Kennesaw State Univ, Dept Chem & Biochem, Kennesaw, GA USA
[2] Univ Utah, Huntsman Canc Inst, Salt Lake City, UT USA
[3] Red Green Res Ctr, Div Infect Dis, BICCB, Dhaka, Bangladesh
[4] Red Green Res Ctr, Div Comp Aided Drug Design, BICCB, Dhaka, Bangladesh
[5] Bangladesh Council Sci & Ind Res BCSIR, Pharmaceut Sci Res Div, Dhaka, Bangladesh
[6] Comilla Univ, Dept Chem, Cumilla, Bangladesh
[7] Kings Coll London, Inst Pharmaceut Sci, Fac Life Sci & Med, Sch Canc & Pharmaceut Sci, London, England
[8] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA USA
[9] Temple Univ, Sch Pharm, Philadelphia, PA USA
[10] Clemson Univ, Dept Chem, Clemson, SC USA
[11] Kennesaw State Univ, Dept Chem & Biochem, Kennesaw, GA 30144 USA
关键词
antiviral peptides; COVID-19; main protease; molecular dynamics simulation; peptide inhibitor; SARS-CoV-2; FUSION CORE; TEMPORIN-L; INACTIVATION; VIRUS;
D O I
10.1002/psc.3553
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 mu M, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 mu M. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation. The therapeutic value of 67 peptides targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) was investigated using molecular docking. Molecular dynamics simulations on eight protein-peptide complexes revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness.image
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Assay Development and Validation for Innovative Antiviral Development Targeting the N-Terminal Autoprocessing of SARS-CoV-2 Main Protease Precursors
    Huang, Liangqun
    Gish, Megan
    Boehlke, James
    Jeep, Ryan H.
    Chen, Chaoping
    VIRUSES-BASEL, 2024, 16 (08):
  • [42] Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2
    Yadav, Rohitash
    Imran, Mohammed
    Dhamija, Puneet
    Chaurasia, Dheeraj Kumar
    Handu, Shailendra
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (17) : 6617 - 6632
  • [43] Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease
    Benalia, Abdelkrim
    Abdeldjebar, Hasnia
    Badji, Taqiy Eddine
    FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2022, 10 (01): : 48 - 59
  • [44] Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study
    Refaey, Rana H.
    El-Ashrey, Mohamed K.
    Nissan, Yassin M.
    VIROLOGY, 2021, 554 : 48 - 54
  • [45] Plant protease inhibitors against SARS-CoV-2 main protease: an in silico approach
    Lima, Adrianne M.
    de Souza, Adson A.
    Amaral, Jackson L.
    Freire, Valder N.
    Souza, Pedro F.
    de Oliveira, Hermogenes D.
    FUTURE VIROLOGY, 2023, 18 (07) : 439 - 454
  • [46] Computational approach towards the design of artemisinin–thymoquinone hybrids against main protease of SARS-COV-2
    Victor Moreira de Oliveira
    Matheus Nunes da Rocha
    Emanuel Paula Magalhães
    Francisco Rogênio da Silva Mendes
    Márcia Machado Marinho
    Ramon Róseo Paula Pessoa Bezerra de Menezes
    Tiago Lima Sampaio
    Hélcio Silva dos Santos
    Alice Maria Costa Martins
    Emmanuel Silva Marinho
    Future Journal of Pharmaceutical Sciences, 7
  • [47] Probing CAS database as prospective antiviral agents against SARS-CoV-2 main protease
    Zia, Komal
    Khan, Salman Ali
    Ashraf, Sajda
    Nur-e-Alam, Mohammad
    Ahmed, Sarfaraz
    Ul-Haq, Zaheer
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1231
  • [48] Computational Study on Inhibitory Potential of Natural Compounds against SARS-CoV-2 Main Protease br
    Amirkhani, Rasool
    Zarei, Armin
    Gholampour, Mahdi
    Tavakoli, Hassan
    Ramazani, Ali
    CHEMICAL METHODOLOGIES, 2024, 8 (02): : 85 - 95
  • [49] Optimization of the expression of the main protease from SARS-CoV-2
    Rong, Yi
    Zhang, Chaofeng
    Gao, Wen-Chao
    Zhao, Cheng
    PROTEIN EXPRESSION AND PURIFICATION, 2023, 203
  • [50] Impact of Drug Repurposing on SARS-Cov-2 Main Protease
    Ndagi, Umar
    Abdullahi, Maryam
    Hamza, Asmau N. N.
    Magaji, Mohd G. G.
    Mhlongo, Ndumiso N. N.
    Babazhitsu, Makun
    Majiya, Hussaini
    Makun, Hussaini Anthony
    Lawal, Monsurat M. M.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (14) : 3311 - 3330