Sensitivity Matrix Based Parameter Identifiability Analysis for Generator Dynamic Models

被引:1
|
作者
Wang, Lei [1 ]
Qi, Junjian [1 ]
机构
[1] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
Generator dynamic model; parameter identifiability; QR decomposition; sensitivity matrix; singular value decomposition; structural identifiability; SYSTEMS;
D O I
10.1109/NAPS58826.2023.10318798
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we develop an efficient method for performing parameter identifiability analysis for the generator dynamic model by utilizing the parameter sensitivity matrix, which includes all derivatives of the model outputs with respect to the parameters. Then, we present a parameter ranking technique based on the rank-revealing QR decomposition of the right singular vectors associated with the non-zero singular values of the sensitivity matrix. This technique ensures that unidentifiable parameters are consistently positioned at the end of the reordered parameter list. To validate the effectiveness of the proposed approach, we conduct experiments on a hydro generator model. The simulation results demonstrate that the sensitivity matrix based approach can accurately and efficiently assess parameter identifiability, facilitating the identification of candidate parameters for calibration.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis
    Qu, Jie
    Xu, Bingye
    Jin, Quanlin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2010, 20 (02): : 119 - 157
  • [42] Local identifiability and sensitivity analysis of neuromuscular blockade and depth of hypnosis models
    Silva, M. M.
    Lemos, J. M.
    Coito, A.
    Costa, B. A.
    Wigren, T.
    Mendonca, T.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 113 (01) : 23 - 36
  • [43] PARAMETER AND STRUCTURAL IDENTIFIABILITY OF LINEAR KINETIC-MODELS BY THE QUANTITATIVE-ANALYSIS OF GAMMA-CAMERA DYNAMIC STUDIES
    CONTE, E
    PIERALICE, M
    DADDABBO, A
    JOURNAL OF NUCLEAR MEDICINE AND ALLIED SCIENCES, 1981, 25 (04): : 203 - 204
  • [44] Multivariate global sensitivity analysis for dynamic models based on wavelet analysis
    Xiao, Sinan
    Lu, Zhenzhou
    Wang, Pan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 170 : 20 - 30
  • [45] Assessing Parameter Relative Importance in Bioprocesses Mathematical Models through Dynamic Sensitivity Analysis
    Cesar Sanchez-Rendon, Julio
    Morales-Rodriguez, Ricardo
    Geronimo Matallana-Perez, Luis
    Andres Prado-Rubio, Oscar
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 1705 - 1710
  • [46] SENSITIVITY ANALYSIS OF PERIODIC MATRIX MODELS
    CASWELL, H
    TREVISAN, MC
    ECOLOGY, 1994, 75 (05) : 1299 - 1303
  • [47] Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems
    Gabor, Attila
    Villaverde, Alejandro F.
    Banga, Julio R.
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [48] Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models
    Roosa, Kimberlyn
    Chowell, Gerardo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2019, 16
  • [49] Easy parameter identifiability analysis with COPASI
    Schaber, Joerg
    BIOSYSTEMS, 2012, 110 (03) : 183 - 185
  • [50] Sensitivity analysis in ordered and restricted parameter models
    Castillo, Enrique
    Castillo, Carmen
    Hadi, Ali S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1556 - 1576