Sensitivity Matrix Based Parameter Identifiability Analysis for Generator Dynamic Models

被引:1
|
作者
Wang, Lei [1 ]
Qi, Junjian [1 ]
机构
[1] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
Generator dynamic model; parameter identifiability; QR decomposition; sensitivity matrix; singular value decomposition; structural identifiability; SYSTEMS;
D O I
10.1109/NAPS58826.2023.10318798
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we develop an efficient method for performing parameter identifiability analysis for the generator dynamic model by utilizing the parameter sensitivity matrix, which includes all derivatives of the model outputs with respect to the parameters. Then, we present a parameter ranking technique based on the rank-revealing QR decomposition of the right singular vectors associated with the non-zero singular values of the sensitivity matrix. This technique ensures that unidentifiable parameters are consistently positioned at the end of the reordered parameter list. To validate the effectiveness of the proposed approach, we conduct experiments on a hydro generator model. The simulation results demonstrate that the sensitivity matrix based approach can accurately and efficiently assess parameter identifiability, facilitating the identification of candidate parameters for calibration.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Inference-based assessment of parameter identifiability in nonlinear biological models
    Daly, Aidan C.
    Gavaghan, David
    Cooper, Jonathan
    Tavener, Simon
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (144)
  • [32] Increasing parameter identifiability through clustered time-varying sensitivity analysis
    Wang, Lu
    Xu, Yue-Ping
    Xu, Jiliang
    Gu, Haiting
    Bai, Zhixu
    Zhou, Peng
    Yu, Hongjie
    Guo, Yuxue
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 181
  • [33] Identifiability of parametric random matrix models
    Hayase, Tomohiro
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2019, 22 (03)
  • [34] Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media
    Sun, N
    Sun, NZ
    Elimelech, M
    Ryan, JN
    WATER RESOURCES RESEARCH, 2001, 37 (02) : 209 - 222
  • [35] Compartmental analysis of dynamic nuclear medicine data: models and identifiability
    Delbary, Fabrice
    Garbarino, Sara
    Vivaldi, Valentina
    INVERSE PROBLEMS, 2016, 32 (12)
  • [36] Identifiability analysis of load parameters based on sensitivity calculation
    Xie, Huiling
    Ju, Ping
    Luo, Jianyu
    Ning, Yan
    Zhu, Huan
    Wang, Xiaoying
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (07): : 17 - 21
  • [37] Parameter redundancy and identifiability in hidden Markov models
    Cole, Diana J.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 105 - 118
  • [38] Parameter redundancy and identifiability in hidden Markov models
    Diana J. Cole
    METRON, 2019, 77 : 105 - 118
  • [39] Non-parametric identifiability and sensitivity analysis of synthetic control models
    Zeitler, Jakob
    Vlontzos, Athanasios
    Gilligan-Lee, Ciaran M.
    CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 213, 2023, 213 : 850 - 865
  • [40] Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models
    Tondel, Kristin
    Vik, Jon Olav
    Martens, Harald
    Indahl, Ulf G.
    Smith, Nicolas
    Omholt, Stig W.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 120 : 25 - 41