Sensitivity Matrix Based Parameter Identifiability Analysis for Generator Dynamic Models

被引:1
|
作者
Wang, Lei [1 ]
Qi, Junjian [1 ]
机构
[1] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
Generator dynamic model; parameter identifiability; QR decomposition; sensitivity matrix; singular value decomposition; structural identifiability; SYSTEMS;
D O I
10.1109/NAPS58826.2023.10318798
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we develop an efficient method for performing parameter identifiability analysis for the generator dynamic model by utilizing the parameter sensitivity matrix, which includes all derivatives of the model outputs with respect to the parameters. Then, we present a parameter ranking technique based on the rank-revealing QR decomposition of the right singular vectors associated with the non-zero singular values of the sensitivity matrix. This technique ensures that unidentifiable parameters are consistently positioned at the end of the reordered parameter list. To validate the effectiveness of the proposed approach, we conduct experiments on a hydro generator model. The simulation results demonstrate that the sensitivity matrix based approach can accurately and efficiently assess parameter identifiability, facilitating the identification of candidate parameters for calibration.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Local parameter identifiability of large-scale nonlinear models based on the output sensitivity covariance matrix
    Mendez-Blanco, Carlos S.
    Ozkan, Leyla
    IFAC PAPERSONLINE, 2021, 54 (03): : 415 - 420
  • [2] Parameter Identifiability Analysis of Excitation System Based on Trajectory Sensitivity
    Liu X.
    Yan L.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (01): : 209 - 214and227
  • [3] Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
    Hulin Wu
    Haihong Zhu
    Hongyu Miao
    Alan S. Perelson
    Bulletin of Mathematical Biology, 2008, 70 : 785 - 799
  • [4] Parameter identifiability and estimation of HIV/AIDS dynamic models
    Wu, Hulin
    Zhu, Haihong
    Miao, Hongyu
    Perelson, Alan S.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) : 785 - 799
  • [5] Bayesian framework of parameter sensitivity, uncertainty, and identifiability analysis in complex water quality models
    Jia, Haifeng
    Xu, Te
    Liang, Shidong
    Zhao, Pei
    Xu, Changqing
    ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 104 : 13 - 26
  • [6] Time Resolved Sensitivity & Identifiability Analysis for Directed Parametrization of Highly Dynamic Models
    Daume, Sven
    Kager, Julian
    Herwig, Christoph
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 1111 - 1116
  • [7] Analysis Method on Parameter Identifiability for Excitation System Model of Generator
    Ma, Rui
    Liu, Ziquan
    Liu, Ju
    Yao, Wei
    Wen, Jinyu
    He, Haibo
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [8] Identifiability of synchronous generator parameters based on physical models
    Chen, Xiangyi
    Zha, Xiaoming
    Li, Chunyan
    Ma, Zhanjun
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (09): : 58 - 62
  • [9] Analyzing the identifiability of linear dynamic models with parameter space separators
    Avdeenko T.V.
    Kargin S.A.
    Journal of Applied and Industrial Mathematics, 2008, 2 (04) : 464 - 476
  • [10] Sensitivity analysis and identifiability for differential equation models
    Wynn, HP
    Parkin, N
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 3116 - 3121