Accelerating the prediction of stable materials with machine learning

被引:24
|
作者
Griesemer, Sean D. [1 ]
Xia, Yi [1 ,2 ]
Wolverton, Chris [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Portland State Univ, Dept Mech & Mat Engn, Portland, OR USA
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 11期
关键词
STRUCTURAL STABILITY; CRYSTAL-STRUCTURE; EXPANSION; ALLOYS;
D O I
10.1038/s43588-023-00536-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Despite the rise in computing power, the large space of possible combinations of elements and crystal structure types makes large-scale high-throughput surveys of stable materials prohibitively expensive, especially for complex materials and materials subject to environmental conditions such as finite temperature. When physics-based computational methods and labor-intensive experiments are not feasible, machine learning (ML) methods can be a rapid and powerful alternative. Owing to a wealth of experimental and first-principles data as well as improved ML frameworks designed for materials modeling, ML is shown to be effective in predicting stability parameters and accelerating the discovery of new stable materials. In this Review, we summarize the most recent advancements in applying ML methodologies in predicting materials stability, focusing particularly on predictions of zero- and finite-temperature stability. We also highlight the need for more ML development in predictions of other thermodynamic knobs, such as pressure and surface/interfacial energy, which practically impact materials stability. The capability of predicting stable materials is important to further accelerate the discovery of novel materials. In this Review, the authors discuss recent developments in machine learning techniques for assessing the stability of materials and highlight the opportunities in further advancing the field.
引用
收藏
页码:934 / 945
页数:12
相关论文
共 50 条
  • [31] Machine Learning in Materials Discovery: Confirmed Predictions and Their Underlying Approaches
    Saal, James E.
    Oliynyk, Anton O.
    Meredig, Bryce
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 49 - 69
  • [32] Machine learning guided design of functional materials with targeted properties
    Balachandran, Prasanna, V
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 164 : 82 - 90
  • [33] Machine learning assisted materials design and discovery for rechargeable batteries
    Liu, Yue
    Guo, Biru
    Zou, Xinxin
    Li, Yajie
    Shi, Siqi
    ENERGY STORAGE MATERIALS, 2020, 31 : 434 - 450
  • [34] Representation of compounds for machine-learning prediction of physical properties
    Seko, Atsuto
    Hayashi, Hiroyuki
    Nakayama, Keita
    Takahashi, Akira
    Tanaka, Isao
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [35] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [36] Strategies for accelerating the adoption of materials informatics
    Ward, Logan
    Aykol, Muratahan
    Blaiszik, Ben
    Foster, Ian
    Meredig, Bryce
    Saal, James
    Suram, Santosh
    MRS BULLETIN, 2018, 43 (09) : 683 - 689
  • [37] Effective subgrouping enhances machine learning prediction in complex materials science phenomena: Inoue's subgrouping in discovering bulk metallic glasses
    Liu, Guannan
    Sohn, Sungwoo
    O'Hern, Corey S.
    Gilbert, Anna C.
    Schroers, Jan
    ACTA MATERIALIA, 2024, 265
  • [38] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215
  • [39] Machine-learning-assisted materials discovery using failed experiments
    Raccuglia, Paul
    Elbert, Katherine C.
    Adler, Philip D. F.
    Falk, Casey
    Wenny, Malia B.
    Mollo, Aurelio
    Zeller, Matthias
    Friedler, Sorelle A.
    Schrier, Joshua
    Norquist, Alexander J.
    NATURE, 2016, 533 (7601) : 73 - +
  • [40] Prediction of digital transformation of manufacturing industry based on interpretable machine learning
    Zhu, Chen
    Liu, Xue
    Chen, Dong
    PLOS ONE, 2024, 19 (03):