Gaussian Process Regression for Astronomical Time Series

被引:65
作者
Aigrain, Suzanne [1 ]
Foreman-Mackey, Daniel [2 ]
机构
[1] Univ Oxford, Dept Phys, Oxford, England
[2] Flatiron Inst, Ctr Computat Astrophys, New York, NY USA
基金
欧洲研究理事会;
关键词
astronomy data analysis; time-series analysis; time-domain astronomy; astrostatistics techniques; computational methods; LIGHT-CURVE; PHOTOMETRIC CLASSIFICATION; STOCHASTIC VARIABILITY; QUASAR VARIABILITY; PROCESS FRAMEWORK; STELLAR ROTATION; GIANT EXOPLANET; PLANETARY; MODEL; SEARCH;
D O I
10.1146/annurev-astro-052920-103508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The past two decades have seen a major expansion in the availability, size, and precision of time-domain data sets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity, and comparative robustness, Gaussian processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such data sets. In this review, we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modeling choices involved in GP regression. We then review applications of GPs to time-domain data sets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code; discuss the problem of computational cost and scalability; and give a snapshot of the current ecosystem of open-source GP software packages. In summary: GP regression is a conceptually simple but statistically principled and powerful tool for the analysis of astronomical time series. It is already widely used in some subfields, such as exoplanets, and gaining traction in many others, such as optical transients. Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time-domain astronomy for many years to come.
引用
收藏
页码:329 / 371
页数:43
相关论文
共 158 条
  • [1] Abbott B. P., 2020, Classical Quantum Gravity, V37
  • [2] Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening
    Agol, Eric
    Luger, Rodrigo
    Foreman-Mackey, Daniel
    [J]. ASTRONOMICAL JOURNAL, 2020, 159 (03)
  • [3] K2SC: flexible systematics correction and detrending of K2 light curves using Gaussian process regression
    Aigrain, S.
    Parviainen, H.
    Pope, B. J. S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (03) : 2408 - 2419
  • [4] Precise time series photometry for the Kepler-2.0 mission
    Aigrain, S.
    Hodgkin, S. T.
    Irwin, M. J.
    Lewis, J. R.
    Roberts, S. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (03) : 2880 - 2893
  • [5] A simple method to estimate radial velocity variations due to stellar activity using photometry
    Aigrain, S.
    Pont, F.
    Zucker, S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (04) : 3147 - 3158
  • [6] GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
    Almosallam, Ibrahim A.
    Jarvis, Matt J.
    Roberts, Stephen J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (01) : 726 - 739
  • [7] Generalized Rybicki Press algorithm
    Ambikasaran, Sivaram
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (06) : 1102 - 1114
  • [8] Fast Direct Methods for Gaussian Processes
    Ambikasaran, Sivaram
    Foreman-Mackey, Daniel
    Greengard, Leslie
    Hogg, David W.
    O'Neil, Michael
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 252 - 265
  • [9] Inferring probabilistic stellar rotation periods using Gaussian processes
    Angus, Ruth
    Morton, Timothy
    Aigrain, Suzanne
    Foreman-Mackey, Daniel
    Rajpaul, Vinesh
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (02) : 2094 - 2108
  • [10] The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background
    Antoniadis, J.
    Arzoumanian, Z.
    Babak, S.
    Bailes, M.
    Nielsen, A-S Bak
    Baker, P. T.
    Bassa, C. G.
    Becsy, B.
    Berthereau, A.
    Bonetti, M.
    Brazier, A.
    Brook, P. R.
    Burgay, M.
    Burke-Spolaor, S.
    Caballero, R. N.
    Casey-Clyde, J. A.
    Chalumeau, A.
    Champion, D. J.
    Charisi, M.
    Chatterjee, S.
    Chen, S.
    Cognard, I
    Cordes, J. M.
    Cornish, N. J.
    Crawford, F.
    Cromartie, H. T.
    Crowter, K.
    Dai, S.
    DeCesar, M. E.
    Demorest, P. B.
    Desvignes, G.
    Dolch, T.
    Drachler, B.
    Falxa, M.
    Ferrara, E. C.
    Fiore, W.
    Fonseca, E.
    Gair, J. R.
    Garver-Daniels, N.
    Goncharov, B.
    Good, D. C.
    Graikou, E.
    Guillemot, L.
    Guo, Y. J.
    Hazboun, J. S.
    Hobbs, G.
    Hu, H.
    Islo, K.
    Janssen, G. H.
    Jennings, R. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (04) : 4873 - 4887