EMBEDDINGS AND REGULARITY OF POTENTIALS IN GRAND VARIABLE EXPONENT FUNCTION SPACES

被引:0
作者
Edmunds, David E. [1 ]
Makharadze, Dali [2 ]
Meskhi, Alexander [3 ,4 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, England
[2] Batumi Shota Rustaveli State Univ, Dept Math, 35-32 Ninoshvili Rustaveli Str, Batumi 6010, Georgia
[3] Kutaisi Int Univ, Youth Ave,Turn 5-7, Kutaisi 4600, Georgia
[4] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 2 Merab Aleksidze 2 Lane, Tbilisi 0193, Georgia
关键词
Grand variable exponent Hajlasz-Morrey spaces; Holder spaces; Spaces of homogeneous type; Embedding; Maximal operator; Sobolev embeddings; MORREY SPACES; MAXIMAL FUNCTIONS; SOBOLEV SPACES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, grand variable exponent Hajlasz-Morrey spaces are introduced and embeddings from these spaces to Holder spaces are established under the log-Holder continuity condition on exponents. The boundedness of the fractional integral operator from a grand variable exponent Morrey space to a grand variable parameter Holder space is also proved. In general, the function spaces are defined on quasi-metric measure spaces, however, the results are new even for the Euclidean spaces.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 22 条
[1]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[2]   Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order [J].
Almeida, Alexandre ;
Samko, Stefan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) :489-496
[3]  
Coifman R. R., 1971, LECT NOTES MATH, V242
[4]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[5]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[6]   Embeddings in Grand Variable Exponent Function Spaces [J].
Edmunds, David E. ;
Kokilashvili, Vakhtang ;
Meskhi, Alexander .
RESULTS IN MATHEMATICS, 2021, 76 (03)
[7]   Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces [J].
Edmunds, David E. ;
Kokilashvili, Vakhtang ;
Meskhi, Alexander .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) :2174-2188
[8]   Inverting the p-harmonic operator [J].
Greco, L ;
Iwaniec, T ;
Sbordone, C .
MANUSCRIPTA MATHEMATICA, 1997, 92 (02) :249-258
[9]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
[10]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX