Ion Conducting Polymer Interfaces for Lithium Metal Anodes: Impact on the Electrodeposition Kinetics

被引:21
作者
Choudhury, Snehashis [1 ]
Huang, Zhuojun [2 ]
Amanchukwu, Chibueze V. [1 ]
Rudnicki, Paul E. [1 ]
Chen, Yuelang [1 ,3 ]
Boyle, David Thomas [3 ]
Qin, Jian [1 ]
Cui, Yi [2 ,4 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
lithium metals; polymer coatings; solid electrolyte interphase; SOLID-ELECTROLYTE INTERPHASES; SINGLE-ION; CARBONATE; DEFORMATION; DENDRITES; STABILITY; BATTERIES; TRANSPORT; GROWTH;
D O I
10.1002/aenm.202301899
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical cells that utilize metals (e.g., lithium, sodium, zinc) as anodes are under intense investigation as they are projected to replace the current lithium-ion batteries to serve as a more energy-dense option for commercial applications. In addition, metal electrodes provide opportunities for fundamental research of different phenomena, such as ion transport and electrochemical kinetics, in the complex environment of reactive metal-electrodeposition. In this work, computationally and experimentally the competing effects related to transport and kinetics during the metal electrodeposition process are examined. Using Brownian dynamics simulations, it is shown that slower deposition kinetics results in a more compact and uniform Li morphology. This finding is experimentally implemented by designing ion-containing polymeric coatings on the electrodes that simultaneously provide pathways for lithium-ion transport, while impeding the charge transfer (Li+ + e(-) & RARR; Li) at heterogeneous surfaces. It is further shown that these ionic polymer interfaces can significantly extend the cell-lifetime of a lithium metal battery in both ether-based and carbonate-based electrolytes. Through theoretical and experimental investigations, it is found that a low kinetic to transport rate ratio is a major factor in influencing the Li plating morphology. The plating morphology can be further fine-tuned by increasing ionic conductivity.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Lithium-Ion-Conducting Ceramics-Coated Separator for Stable Operation of Lithium Metal-Based Rechargeable Batteries [J].
Shomura, Ryo ;
Tamate, Ryota ;
Matsuda, Shoichi .
MATERIALS, 2022, 15 (01)
[32]   Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes [J].
Jin, Tong ;
Liu, Ming ;
Su, Kai ;
Lu, Yue ;
Cheng, Guang ;
Liu, Yao ;
Li, Nian Wu ;
Yu, Le .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) :57489-57496
[33]   An ion redistributor for dendrite-free lithium metal anodes [J].
Zhao, Chen-Zi ;
Chen, Peng-Yu ;
Zhang, Rui ;
Chen, Xiang ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Cheng, Xin-Bing ;
Zhang, Qiang .
SCIENCE ADVANCES, 2018, 4 (11)
[34]   First-Principles Study on Polymer Electrolyte Interface Engineering for Lithium Metal Anodes [J].
Wang, Yao ;
Ren, Ziang ;
Zheng, Jianhui ;
Wang, Juncheng ;
Yuan, Huadong ;
Liu, Yujing ;
Liu, Tiefeng ;
Luo, Jianmin ;
Nai, Jianwei ;
Tao, Xinyong .
CHEMSUSCHEM, 2024, 17 (22)
[35]   Anion-tethered Single Lithium-ion Conducting Polyelectrolytes through UV-induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes [J].
He, Yubin ;
Wang, Chunyang ;
Zou, Peichao ;
Lin, Ruoqian ;
Hu, Enyuan ;
Xin, Huolin L. L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (38)
[36]   Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes [J].
Wang, Yaoda ;
Liang, Junchuan ;
Song, Xinmei ;
Jin, Zhong .
ENERGY STORAGE MATERIALS, 2023, 54 :732-775
[37]   Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes [J].
Liu, Lin ;
Yin, Ya-Xia ;
Li, Jin-Yi ;
Guo, Yu-Guo ;
Wan, Li-Jun .
CHEMICAL COMMUNICATIONS, 2018, 54 (42) :5330-5333
[38]   A 3D conducting scaffold with lithiophilic carbon nanoparticles for stable lithium metal battery anodes [J].
Li, Zhicun ;
Fan, Hailin ;
Zhang, Zheng ;
Wang, Liwei ;
Cao, Xiaoju ;
Gao, Wencao ;
Liu, Yuwen ;
Liu, Yanxia ;
Huo, Feng .
JOURNAL OF POWER SOURCES, 2024, 618
[39]   Rational Design of Interfaces for High Current-Density Lithium Metal Anodes [J].
Wang, Hongjiao ;
Xue, Bai ;
Ma, Yue ;
Ma, Hongli ;
Zhang, Xianghua ;
Lu, Mu ;
Yang, Chenglin ;
Li, Zikun ;
Calvez, Laurent ;
Fan, Bo ;
Pang, Quanquan .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (27) :39244-39253
[40]   Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes [J].
Gao, Yuliang ;
Qiao, Fahong ;
You, Jingyuan ;
Shen, Chao ;
Zhao, Hui ;
Gu, Jinlei ;
Ren, Zengying ;
Xie, Keyu ;
Wei, Bingqing .
JOURNAL OF ENERGY CHEMISTRY, 2021, 55 (55) :580-587