Ion Conducting Polymer Interfaces for Lithium Metal Anodes: Impact on the Electrodeposition Kinetics

被引:21
作者
Choudhury, Snehashis [1 ]
Huang, Zhuojun [2 ]
Amanchukwu, Chibueze V. [1 ]
Rudnicki, Paul E. [1 ]
Chen, Yuelang [1 ,3 ]
Boyle, David Thomas [3 ]
Qin, Jian [1 ]
Cui, Yi [2 ,4 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
lithium metals; polymer coatings; solid electrolyte interphase; SOLID-ELECTROLYTE INTERPHASES; SINGLE-ION; CARBONATE; DEFORMATION; DENDRITES; STABILITY; BATTERIES; TRANSPORT; GROWTH;
D O I
10.1002/aenm.202301899
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical cells that utilize metals (e.g., lithium, sodium, zinc) as anodes are under intense investigation as they are projected to replace the current lithium-ion batteries to serve as a more energy-dense option for commercial applications. In addition, metal electrodes provide opportunities for fundamental research of different phenomena, such as ion transport and electrochemical kinetics, in the complex environment of reactive metal-electrodeposition. In this work, computationally and experimentally the competing effects related to transport and kinetics during the metal electrodeposition process are examined. Using Brownian dynamics simulations, it is shown that slower deposition kinetics results in a more compact and uniform Li morphology. This finding is experimentally implemented by designing ion-containing polymeric coatings on the electrodes that simultaneously provide pathways for lithium-ion transport, while impeding the charge transfer (Li+ + e(-) & RARR; Li) at heterogeneous surfaces. It is further shown that these ionic polymer interfaces can significantly extend the cell-lifetime of a lithium metal battery in both ether-based and carbonate-based electrolytes. Through theoretical and experimental investigations, it is found that a low kinetic to transport rate ratio is a major factor in influencing the Li plating morphology. The plating morphology can be further fine-tuned by increasing ionic conductivity.
引用
收藏
页数:11
相关论文
共 50 条
[21]   A versatile single lithium-ion conducting polymer electrolyte for lithium metal solid-sate batteries [J].
Aldalur, Itziar ;
Zugazua, Oihane ;
Santiago, Alexander ;
Fraile-Insagurbe, David ;
De Anastro, Asier Fdz ;
Sanchez-Diez, Eduardo ;
Armand, Michel ;
Martinez-Ibanez, Maria .
JOURNAL OF POWER SOURCES, 2024, 624
[22]   Hosting Li0 in an activated lithiophilic polymer matrix with electrodeposition regulating spaces for stable lithium metal anodes [J].
He, Yuanyue ;
Song, Libo ;
Li, Zhendong ;
Yao, Xiayin ;
Peng, Zhe .
NANO ENERGY, 2023, 118
[23]   A novel non-porous separator based on single-ion conducting triblock copolymer for stable lithium electrodeposition [J].
Liu, Kun-Lin ;
Chao, Chung-Hsiang ;
Lee, Hsin-Chieh ;
Tsao, Cheng-Si ;
Fang, Jason ;
Wu, Nae-Lih ;
Chao, Chi-Yang .
JOURNAL OF POWER SOURCES, 2019, 419 (58-64) :58-64
[24]   Current density alters the mechanical stresses during electrodeposition of lithium metal anodes [J].
Shin, Jungho ;
Pharr, Matt .
EXTREME MECHANICS LETTERS, 2024, 70
[25]   Single-ion conducting interlayers for improved lithium metal plating [J].
Wan, Jiajia ;
Liu, Xu ;
Diemant, Thomas ;
Wan, Mintao ;
Passerini, Stefano ;
Paillard, Elie .
ENERGY STORAGE MATERIALS, 2023, 63
[26]   Design principles for self-forming interfaces enabling stable lithium-metal anodes [J].
Zhu, Yingying ;
Pande, Vikram ;
Li, Linsen ;
Wen, Bohua ;
Pan, Menghsuan Sam ;
Wang, David ;
Ma, Zi-Feng ;
Viswanathan, Venkatasubramanian ;
Chiang, Yet-Ming .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (44) :27195-27203
[27]   The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes [J].
Ma, Xia-Xia ;
Shen, Xin ;
Chen, Xiang ;
Fu, Zhong-Heng ;
Yao, Nan ;
Zhang, Rui ;
Zhang, Qiang .
SMALL STRUCTURES, 2022, 3 (08)
[28]   Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for High-Performance Lithium Metal Anodes [J].
Ye, Lei ;
Liao, Meng ;
Wang, Bingjie ;
Peng, Huisheng .
CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (19)
[29]   Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes [J].
Shen, Xin ;
Liu, He ;
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi .
ENERGY STORAGE MATERIALS, 2018, 12 :161-175
[30]   A mixed ion-electron conducting network derived from a porous CoP film for stable lithium metal anodes [J].
Cao, Xin ;
Wang, Qian ;
Wang, Hangchao ;
Shang, Zhicheng ;
Qin, Jinli ;
Liu, Wen ;
Zhou, Henghui ;
Sun, Xiaoming .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) :5486-5496