Bioactive Magnetic Materials in Bone Tissue Engineering: A Review of Recent Findings in CaP-Based Particles and 3D-Printed Scaffolds

被引:13
|
作者
Carvalho, Tania S. S. [1 ]
Torres, Paula M. C. [1 ]
Belo, Joao H. [2 ]
Mano, Joao [3 ]
Olhero, Susana M. [1 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, Dept Mat & Ceram Engn DEMaC, CICECO, P-3810193 Aveiro, Portugal
[2] Univ Porto, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, Dept Phys & Astron, P-4169007 Porto, Portugal
[3] Univ Aveiro, Aveiro Inst Mat, Dept Chem, CICECO, P-3810193 Aveiro, Portugal
来源
ADVANCED NANOBIOMED RESEARCH | 2023年 / 3卷 / 09期
基金
瑞典研究理事会;
关键词
additive manufacturing; bioactive materials; bone tissue engineering; magnetic calcium phosphates; magnetic ordering; IRON-OXIDE NANOPARTICLES; BETA-TRICALCIUM PHOSPHATE; CORE-SHELL NANOPARTICLES; GLASS-CERAMIC SCAFFOLDS; DRUG-DELIVERY SYSTEMS; OF-THE-ART; BIOMEDICAL APPLICATIONS; COMPOSITE SCAFFOLDS; FE3O4; NANOPARTICLES; MECHANICAL-PROPERTIES;
D O I
10.1002/anbr.202300035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diverse applications of nanoparticles (NP) have been revolutionary for various industrial sectors worldwide. In particular, magnetic nanoparticles (MNP) have gained great interest because of their applications in specialized medical areas. This review starts with a brief overview of the magnetic behavior of MNP and a short description of their most used synthesis methods. The second part is dedicated to the MNP applications in tissue engineering, emphasizing the calcium phosphate-based NP with intrinsic magnetic properties, recently highlighted in the literature as alternative and viable solutions for bone regeneration. The challenges associated with the controversial long-term toxicity effects of MNP can be overcome using this new generation of multifunctional bone-like magnetic materials. Furthermore, the influence of magnetic field parameters, such as modality of application, intensity, and spatial distribution, on the biological behavior of magnetic materials, especially for bone repair, is shown. The last part of the review presents the current state of the art regarding the development of magnetic biomaterials for additive manufacturing (AM), aiming to fabricate scaffolds by AM technologies, focusing on bone tissue engineering applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [11] Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering
    Chan, Shareen S. L.
    Black, Jay R.
    Franks, George, V
    Heath, Daniel E.
    BIOMATERIALS ADVANCES, 2025, 169
  • [12] Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering
    Wang, Martha O.
    Vorwald, Charlotte E.
    Dreher, Maureen L.
    Mott, Eric J.
    Cheng, Ming-Huei
    Cinar, Ali
    Mehdizadeh, Hamidreza
    Somo, Sami
    Dean, David
    Brey, Eric M.
    Fisher, John P.
    ADVANCED MATERIALS, 2015, 27 (01) : 138 - 144
  • [13] Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering?
    Dukle, Amey
    Murugan, Dhanashree
    Nathanael, Arputharaj Joseph
    Rangasamy, Loganathan
    Oh, Tae-Hwan
    POLYMERS, 2022, 14 (08)
  • [14] 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies
    Avanzi, Ingrid Regina
    Parisi, Julia Risso
    Souza, Amanda
    Cruz, Matheus Almeida
    Santi Martignago, Cintia Cristina
    Ribeiro, Daniel Araki
    Cavalcante Braga, Anna Rafaela
    Renno, Ana Claudia
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (01) : 203 - 219
  • [15] Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis
    Liu, Xiao
    Zhao, Naru
    Liang, Haifeng
    Tan, Bizhi
    Huang, Fangli
    Hu, Hao
    Chen, Yan
    Wang, Gang
    Ling, Zemin
    Liu, Chun
    Miao, Yali
    Wang, Yingjun
    Zou, Xuenong
    JOURNAL OF ORTHOPAEDIC TRANSLATION, 2022, 37 : 152 - 162
  • [16] 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering
    Iglesias-Mejuto, Ana
    Garcia-Gonzalez, Carlos A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 131
  • [17] 3D-Printed Polyurethane Scaffolds for Bone Tissue Engineering: Techniques and Emerging Applications
    Shanno, Kumari
    Mangala, Preeti
    Shanmugarajan, Thukani Sathanantham
    Bhyan, Bhupinder
    Shinde, Manoj Gangadhar
    Rane, Bhuvaneshwari Yogesh
    Ali, Syed Salman
    Kumar, Mohit
    Kumar, Pawan
    REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2025,
  • [18] Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering
    Ledda, Mario
    Merco, Miriam
    Sciortino, Antonio
    Scatena, Elisa
    Convertino, Annalisa
    Lisi, Antonella
    Del Gaudio, Costantino
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [19] 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy
    Ma, Hongshi
    Feng, Chun
    Chang, Jiang
    Wu, Chengtie
    ACTA BIOMATERIALIA, 2018, 79 : 37 - 59
  • [20] 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering
    Iglesias-Mejuto, Ana
    Garcia-Gonzalez, Carlos A.
    POLYMERS, 2022, 14 (06)