Robust nonparametric frontier estimation in two steps

被引:0
作者
Chen, Yining [1 ]
Torrent, Hudson S. [2 ]
Ziegelmann, Flavio A. [2 ]
机构
[1] London Sch Econ & Polit Sci, Dept Stat, London, England
[2] Univ Fed Rio Grande do Sul, Dept Stat, Porto Alegre, RS, Brazil
关键词
Concavity; local polynomial smoothing; monotonicity; outlier detection; shape-constrained regression; EFFICIENCY; MODELS; BANDWIDTH; OUTLIERS;
D O I
10.1080/07474938.2023.2219183
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a robust methodology for estimating production frontiers with multi-dimensional input via a two-step nonparametric regression, in which we estimate the level and shape of the frontier before shifting it to an appropriate position. Our main contribution is to derive a novel frontier estimation method under a variety of flexible models which is robust to the presence of outliers and possesses some inherent advantages over traditional frontier estimators. Our approach may be viewed as a simplification, yet a generalization, of those proposed by Martins-Filho and coauthors, who estimate frontier surfaces in three steps. In particular, outliers, as well as commonly seen shape constraints of the frontier surfaces, such as concavity and monotonicity, can be straightforwardly handled by our estimation procedure. We show consistency and asymptotic distributional theory of our resulting estimators under standard assumptions in the multi-dimensional input setting. The competitive finite-sample performances of our estimators are highlighted in both simulation studies and empirical data analysis.
引用
收藏
页码:612 / 634
页数:23
相关论文
共 50 条
  • [1] Unobserved heterogeneity and endogeneity in nonparametric frontier estimation
    Simar, Leopold
    Vanhems, Anne
    Van Keilegom, Ingrid
    JOURNAL OF ECONOMETRICS, 2016, 190 (02) : 360 - 373
  • [2] Nonparametric quantile frontier estimation under shape restriction
    Wang, Yongqiao
    Wang, Shouyang
    Dang, Chuangyin
    Ge, Wenxiu
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 232 (03) : 671 - 678
  • [3] Robust estimation in stochastic frontier models
    Song, Junmo
    Oh, Dong-hyun
    Kang, Jiwon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 243 - 267
  • [4] A multilevel decomposition of school performance using robust nonparametric frontier techniques
    Thieme, Claudio
    Prior, Diego
    Tortosa-Ausina, Emili
    ECONOMICS OF EDUCATION REVIEW, 2013, 32 : 104 - 121
  • [5] Computing Economies of Scope Using Robust Partial Frontier Nonparametric Methods
    Carvalho, Pedro
    Marques, Rui Cunha
    WATER, 2016, 8 (03)
  • [6] Globalization and productivity: A robust nonparametric world frontier analysis
    Mastromarco, Camilla
    Simar, Leopold
    ECONOMIC MODELLING, 2018, 69 : 134 - 149
  • [7] A tourist in the economics of tourism: Reflections on nonparametric estimation of stochastic frontier models
    Parmeter, Christopher F.
    TOURISM ECONOMICS, 2025, 31 (01) : 53 - 71
  • [8] Robust nonparametric estimation with missing data
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 571 - 592
  • [9] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [10] Frontier estimation in nonparametric location-scale models
    Florens, Jean-Pierre
    Simar, Leopold
    Van Keilegom, Ingrid
    JOURNAL OF ECONOMETRICS, 2014, 178 : 456 - 470