Methods of Annotating and Identifying Metaphors in the Field of Natural Language Processing

被引:1
|
作者
Pticek, Martina [1 ]
Dobsa, Jasminka [1 ]
机构
[1] Univ Zagreb, Fac Org & Informat, Varazhdin 42000, Croatia
关键词
metaphor; metaphor annotation; metaphor identification; neural networks; word embeddings; large language models;
D O I
10.3390/fi15060201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Metaphors are an integral and important part of human communication and greatly impact the way our thinking is formed and how we understand the world. The theory of the conceptual metaphor has shifted the focus of research from words to thinking, and also influenced research of the linguistic metaphor, which deals with the issue of how metaphors are expressed in language or speech. With the development of natural language processing over the past few decades, new methods and approaches to metaphor identification have been developed. The aim of the paper is to map the methods of annotating and identifying metaphors in the field of natural language processing and to give a systematic overview of how relevant linguistic theories and natural language processing intersect. The paper provides an outline of cognitive linguistic metaphor theory and an overview of relevant methods of annotating linguistic and conceptual metaphors as well as publicly available datasets. Identification methods are presented chronologically, from early approaches and hand-coded knowledge to statistical methods of machine learning and contemporary methods of using neural networks and contextual word embeddings.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Automated scoring of the autobiographical interview with natural language processing
    Ruben D.I. van Genugten
    Daniel L. Schacter
    Behavior Research Methods, 2024, 56 : 2243 - 2259
  • [32] A comparison of word embeddings for the biomedical natural language processing
    Wang, Yanshan
    Liu, Sijia
    Afzal, Naveed
    Rastegar-Mojarad, Majid
    Wang, Liwei
    Shen, Feichen
    Kingsbury, Paul
    Liu, Hongfang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 87 : 12 - 20
  • [33] SECNLP: A survey of embeddings in clinical natural language processing
    Kalyan, Katikapalli Subramanyam
    Sangeetha, S.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 101 (101)
  • [34] Automated scoring of the autobiographical interview with natural language processing
    van Genugten, Ruben D. I.
    Schacter, Daniel L.
    BEHAVIOR RESEARCH METHODS, 2024, 56 (03) : 2243 - 2259
  • [35] BioInstruct: instruction tuning of large language models for biomedical natural language processing
    Tran, Hieu
    Yang, Zhichao
    Yao, Zonghai
    Yu, Hong
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09) : 1821 - 1832
  • [36] Natural Language Processing to Extract Information from Portuguese-Language Medical Records
    da Rocha, Naila Camila
    Barbosa, Abner Macola Pacheco
    Schnr, Yaron Oliveira
    Machado-Rugolo, Juliana
    de Andrade, Luis Gustavo Modelli
    Corrente, Jose Eduardo
    de Arruda Silveira, Liciana Vaz
    DATA, 2023, 8 (01)
  • [37] Domain specific word embeddings for natural language processing in radiology
    Chen, Timothy L.
    Emerling, Max
    Chaudhari, Gunvant R.
    Chillakuru, Yeshwant R.
    Seo, Youngho
    Vu, Thienkhai H.
    Sohn, Jae Ho
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 113
  • [38] Screening for Depression Using Natural Language Processing:Literature Review
    Teferra, Bazen Gashaw
    Rueda, Alice
    Pang, Hilary
    Valenzano, Richard
    Samavi, Reza
    Krishnan, Sridhar
    Bhat, Venkat
    INTERACTIVE JOURNAL OF MEDICAL RESEARCH, 2024, 13
  • [39] Recent Trends in Deep Learning Based Natural Language Processing
    Young, Tom
    Hazarika, Devamanyu
    Poria, Soujanya
    Cambria, Erik
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018, 13 (03) : 55 - 75
  • [40] Automotive fault nowcasting with machine learning and natural language processing
    Pavlopoulos, John
    Romell, Alv
    Curman, Jacob
    Steinert, Olof
    Lindgren, Tony
    Borg, Markus
    Randl, Korbinian
    MACHINE LEARNING, 2024, 113 (02) : 843 - 861